Меню

Звезда средней массы от 2 до 5 масс солнца схема эволюции

Звезда средней массы от 2 до 5 масс солнца схема эволюции

Звездами с низкой и средней массой (0.08Мsun

10Мsun настолько горячи, что гелий загорается в ядре до того, как звезда достигнет ветви красных гигантов, загорание происходит еще тогда, когда эти звезды являются голубыми сверхгигантами и звезда продолжает монотонно эволюционировать в сторону покраснения; пока гелий горит в конвективном ядре, водород горит в слоевом источнике, обеспечивая большую часть светимости звезды. После исчерпания гелия в ядре температура там так высока, что углерод загорается до того, как газ станет вырожденным и углеродное горение включается постепенно без взрывных процессов. Загорание происходит до того, как звезда достигнет асимптотической ветви гигантов. Во все время горения углерода в ядре происходит отток энергии из ядра за счет нейтринного охлаждения, и основным источником поверхностной светимости является горение водорода и гелия в слоевых источниках. Эти звезды продолжают вырабатывать все более и более тяжелые элементы вплоть до железа, после чего ядро коллапсирует, образуя нейтронную звезду или черную дыру (в зависимости от массы ядра), а внешние слои разлетаются, что выглядит как взрыв сверхновой II типа.

Мы не можем точно указать массу одиночной звезды, которая должна взорваться как сверхновая второго типа, так как мы не знаем скорости потери вещества массивными звездами, хотя точно знаем, что вещество они теряют на всем протяжении эволюции. Приблизительная оценка массы звезды, которая должна взорваться как сверхновая II типа: М*=10±3Мsun.

На этой таблице собраны теоретические сведения по эволюции одиночных звезд в зависимости от массы. Следует подчеркнуть, что таблица составлена без учета потери массы звездами на поздних стадиях эволюции.

Источник

Эволюция звезд

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Цикл жизни звёзды

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Читайте также:  Шаблоны солнца для рисования

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности. Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5—0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра, если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Читайте также:  Ханар ты солнце мое

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Рождение и этапы эволюции звезд

Рождение звезд

Как известно, звезды образуются из межзвездных газовых облаков, находящихся в большинстве своем в галактическом диске. Тем не менее, детально этот процесс образования звезды осмыслен еще не до конца.

В частности, еще неясно, какие явления могут приводить к концентрации газа в облаке, после которой начинается образование новой звезды – в космосе, как известно, вакуум, соответственно “толкотни” между молекулами не наблюдается. Отчего в один прекрасный момент гигантские, растянутые на световые года облака “космической пыли” вдруг начинают уплотнятся и формировать звезды? Хороший вопрос!

Диаграмма Герцшпрунга — Рессела: Шкала эволюции звезд

Один из самых интересных ответов на этот вопрос, предложенных астрономами, предполагает взрыв сверхновой недалеко от облака пыли. Действительно, взрыв порождает ударные волны, которые сжимают, газ, что приводит к необходимой его концентрации в самой плотной области облака.

С увеличением концентрации температура в центре облака поднимается, и протозвезда становится источником инфракрасного излучения. Когда температура достаточно высока, водород начинает гореть. Процесс уплотнения заканчивается, а звезда на диаграмме Герцшпрунга — Рессела оказывается на главной последовательности.

С этого момента звезда на очень продолжительный период стабилизируется и проводит в этом состоянии около 90% своей жизни, в зависимости от массы.

Та, звезда солнечной массы остается на главной последовательности около 10 млрд. лет, а звезда на порядок большей массы — лишь 300 млн. лет.

Эволюция звезд с малой массой

Пройдя стационарный период, который соответствует фазе главной последовательности, звезда начинает терять свою стабильность, и дальнейшая судьба у нее может быть различной.

Рассмотрим случай звезды маленькой массы, то есть имеющей массу в 4—5 раз меньше солнечной. Ее особенность такова: в самых глубоких слоях отсутствует конвекция, то есть материя, из которой она состоит, не столь активна, как это, напротив, имеет место у звезд большой массы.

Это означает, что, когда водород в ядре начинает иссякать, реакция не перемещается к более верхним слоям, а продолжает происходить вокруг ядра, где водород очень медленно превращается в гелий.

Однако ядро гелия раскаляется, верхние слои звезды упорядочиваются, перестраивая свою структуру, а светило на диаграмме Герцшпрунга — Рессела медленно покидает главную последовательность. Плотность материи в центре звезды увеличивается, а вещество в ядре вырождается, то есть приобретает особую консистенцию, отличную от консистенции обычного вещества.

Планетарная туманность М27 Гантель: яркий «пузырь» – сброшенная оболочка звезды

Звезда на диаграмме Герцшпрунга — Рессела смещается вправо, а затем вверх, двигаясь в область красных гигантов. Ее размеры значительно увеличиваются, а температура внешних слоев уменьшается благодаря эффекту расширения.

Читайте также:  Что может делать солнце как живое существо

А вот температура ядра снижается, поэтому ядерная реакция уже не может идти из-за того, что температура недостаточна для синтеза гелия. Подобный синтез сопровождается так называемой вспышкой гелия. Звезда на диаграмме продолжает перемещаться вправо, в то место, где на оси абсцисс диаграммы находятся шаровые скопления.

В углеродном ядре температура растет до момента, когда, если звезда обладает достаточной массой, углерод начинает гореть, а затем взрывается. Происходит это или нет, во время последней стадии материя поверхности звезды теряет массу. Эта потеря может происходить на разных фазах или единовременно, когда верхние слои звезды стремятся наружу, образовывая большой шар.

В последнем случае образуется планетарная туманность, то есть сферическая оболочка материи, распространяющаяся в космос Ядро звезды, если при последующих сжатиях и расширениях оно испускает количество материи, превышающее 1,4 солнечной массы, становится белым карликом, из чего можно сделать вывод о ее медленном угасании.

Считается, что, поскольку охлаждение идет очень медленно, с рождения Вселенной ни один белый карлик еще не дошел до термической смерти.

Конечная стадия эволюции звезд, масса которых равна или меньше солнечной – звезда типа белый карлик.

Эволюция звезд с большой массой

У звезд с массой, превышающей солнечную в 5 раз, фазы сжатия и расширения повторяются несколько раз, всегда приводя к образованию тяжелых химических элементов. Во время этих нестабильных фаз звезда претерпевает последовательные изменения видимой звездной величины. В этих случаях говорят о переменной звезде.

Цефеиды представляют собой классический пример звезд, проходящих такие стадии эволюции.

Звезда приобретает каплевидную концентрическую структуру, внутри происходят последние фазы ядерных реакций. В частности, более легкие элементы сгорают в более высоких слоях, где температура ниже, тогда как более тяжелые пылают в центральной части ядра, где температура, напротив, имеет тенденцию к повышению.

У звезд с массой, превышающей солнечную в 5—9 раз, сгорание углерода и кислорода может происходить практически мгновенно. Если масса звезды еще больше, в ядре синтезируются такие элементы, как магний, неон, сера и кремний.

В чрезвычайных случаях термоядерный синтез продолжается до тех пор, пока ядро звезды почти целиком не преобразовывается в железо. В этот момент цепная реакция прекращается, потому что она не может идти одновременно с плавлением железа. Таким образом, оказывается, что звезда израсходовала все свои запасы ядерного топлива и начинает сжиматься.

Нейтронная звезда – конечный продукт эволюции некоторых типов звезд

Если масса звезды не превышает 10 солнечных масс, последние фазы оказываются нестабильными, в разных слоях идут спонтанные ядерные реакции, которые могут привести к вспышке сверхновой. Тем временем взаимная нейтрализация протонов и электронов звездного ядра приводит к тому, что ядро полностью начинает состоять из нейтронов.

После взрыва поверхностные слои звезды разрушаются, а ядро быстро уплотняется, пока не становится несжимаемым. В этом случае сжатие звезды поддерживается. Остатки вещества становятся нейтронной звездой, которая стремительно вращается вокруг собственной оси, и она начинает наблюдаться как пульсар, из-за взрыва перемещающийся по космосу со скоростью в сотни километров в секунду.

Конечная стадия эволюции звезд, масса которых превышает солнечную в 5-9 раз – нейтронная звезда.

Если масса звезды еще больше, давление гравитационных сил настолько велико, что нейтроны ядра вынуждены «пакетироваться» до невообразимой плотности, пока вещество не потеряет свою сущность.

В этом случае речь идет о необратимом гравитационном коллапсе, что приводит к образованию черной дыры.

Конечная стадия эволюции звезд, масса которых превышает солнечную более чем в 10 раз – черная дыра.

Источник

Adblock
detector