Меню

Звезда главной последовательности вдесятеро уступает солнцу по светимости что это за звезда

Звезда главной последовательности вдесятеро уступает солнцу по светимости что это за звезда

Главная последовательность (ГП) — наиболее населенная область на диаграмме Гецшпрунга — Рессела (ГР). Основная масса звезд на диаграмме ГР расположена вдоль диагонали на полосе, идущей от правого нижнего угла диаграммы в левый верхний угол. Эта полоса и называется главной последовательностью.

Нижний правый угол занят холодными звездами с малой светимостью и малой массой, начиная со звезд порядка 0.08 солнечной массы, а верхний левый угол занимают горячие звезды, имеющие массу порядка 60-100 солнечных масс и большую светимость (вопрос об устойчивости звезд с массами больше 60-120Мsun остается открытым, хотя, по-видимому, в последнее время имеются наблюдения таких звезд).

Фаза эволюции, соответствующая главной последовательности, связана с выделением энергии в процессе превращения водорода в гелий, и так как все звезды ГП имеют один источник энергии, то положение звезды на диаграмме ГР определяется ее массой и в малой степени химическим составом.

Основное время жизни звезда проводит на главной последовательности и поэтому главная последовательность — наиболее населенная группа на диаграмме ГР (до 90% всех звезд лежат на ней).

Главная последовательность

Основные соотношения, справедливые для звезд главной последовательности

  • Радиус, R(см.) Радиус фотосферы звезды
  • Светимость, L (эрг/c) Полное электромагнитное излучение звезды в единицу времени
  • Эффективная температура, Teff (К) Такая температура фотосферы, которая обеспечит полную светимость звезды по Планковскому закону чернотельного излучения.

Светимость звезды пропорциональна ее эффективной температуре и площади поверхности.

Зависимость масса-светимость для главной последовательности

Для звезд главной последовательности существует апроксимационное соотношение, известное как зависимость масса-светимость. Это соотношение было выведено из наблюдательного определения масс и светимостей звезд главной последовательности, но оно также подтверждается расчетами звездных моделей для звезд ГП. Светимость звезды грубо пропорциональна ее массе в степени 3.5 или 4:

Таким образом, звезда в два раза массивней Солнца имеет светимость в 11 раз большую, чем Солнце. Наиболее массивные звезды главной последовательности примерно в 60 раз массивней Солнца. Это соответствует светимости почти в миллион раз больше солнечной.

Для наиболее массивных звезд L

Время жизни на главной последовательности

Звезды проводят большую часть своей жизни на главной последовательности. В общем, более массивные звезды живут более быстрой жизнью, чем менее массивные. Казалось бы, что звезды, имеющие большее количество водорода для горения должны были бы расходовать его дольше, но это не так, потому что они используют свои ресурсы быстрее.

Оценим время жизни звезды на ГП. Упрощенно, оно равно отношению энергии, которая может быть излучена к выделению звездой энергии в единицу времени (это светимость L).

Энергия, излучаемая звездой за время t, равна произведению светимости на это время:

Согласно уравнению Эйнштейна:

Комбинируя эти два выражения, получаем:

учитывая закон масса-светимость, получаем:

или в солнечных единицах:

Таким образом, если расчетное время жизни Солнца на главной последовательности составляет 10 10 лет, то звезда в 10 раз массивней Солнца будет жить в 1000 раз меньше т.е. 10 7 лет. Так как для наиболее массивных звезд L

M, то по мере увеличения их массы время жизни перестает увеличиваться и стремится к величине

3.5 млн. лет, что очень мало по космическим масштабам.

Источник

Главная последовательность звезд

Как известно, одним из основных классов является главная последовательность звезд. В принципе, это видно на диаграмме Герцшпрунга-Рассела . Собственно говоря, на ней область данных светил располагается по диагонали, которая начинается слева от верхнего угла и направлена вправо к нижнему углу. То есть от наивысшей светимости к самой низкой (от синего цвета к красному). Таким образом, главная последовательность звезд широко охватывает объекты, различные по своим характеристикам.
Между прочим все светила в тот или иной момент своей жизни проходят данный этап эволюции. Причем он отличается высокой продолжительностью.
Правда, бывают исключения. Например, субкарлики не достигают основной категории звёздных тел. Хотя они относятся к одному спектральному классу, субкарлики менее яркие. Поэтому в диаграмме лежат ниже, чем главная последовательность звезд.

Чем отличается главная последовательность звезд

Разумеется, классы звёзд отличаются между собой. Собственно, для этого их и разгруппировали по характеристикам и свойствам.
Во-первых, как вы уже поняли, это продолжительность нахождения светила на этом этапе. И вправду, формирование, так сказать, становление и дальнейшее развитие проходят намного быстрее. Проще говоря, большую часть своей жизни звезда пребывает на этом этапе. В следствии чего, во Вселенной больше всего звёзд, которые принадлежат к основной последовательности.
Во-вторых, на главной последовательности энергия звёздного тела вырабатывается за счёт термоядерных процессов. А точнее благодаря превращению (сгоранию) водорода в гелий, то есть синтеза. Стоит отметить, что в это время гелий не сгорает. Но после того, как закончится запас водорода, наступит его очередь.

При уменьшении водородных ресурсов скорость реакций и давление также падают. Из-за чего светило сжимается, а в его центре увеличивается давление. В результате растёт количество выделяемой энергии, светимость и температура поверхности.
Значит на диаграмме тело изменяет положение, как только меняются процессы внутри него. То есть с течением времени звезда сходит основной области и переходит на другую эволюционную стадию.

Иногда звёзды, относящиеся к этому классу, называют карликами из-за того, что многие имеют небольшие размеры. Но это не совсем верно, а точнее верно не для всех. Потому как объекты спектральных классов А , В , F и О не намного отличаются от гигантов. Между собой их различают, прежде всего, по линиям поглощения.

Строение звезд главной последовательности:

  • ядро,
  • зона лучистого переноса (внутри),
  • конвективная зона (во внешних слоях).

Однако подобную структуру имеют не все светила класса. К примеру, массивные тела (то есть имеющие массу выше солнечной) не содержат конвективную зону. То есть по всей области кроме центра перенос энергии осуществляется излучением и поглощением фотонов.

Читайте также:  Как расположены планеты от солнца порядок

Примеры звезд главной последовательности

Безусловно, самый яркий и простой пример это Солнце. Правда, сейчас оно находится как раз на этом этапе жизни. Между прочим, многие параметры и черты других звёздных тел сравнивают с солнечными значениями.
Как оказалось, у популярного Сириуса есть спутник — Сириус В. Этот белый карлик лежит на диаграмме Герцшпрунга-Рассела внизу с левой стороны.
Более того, известная Альфа Ориона — Бетельгейзе также находится на основном жизненном цикле. Хотя она относится к сверхгигантам.
А вот из красных гигантов, можно выделить, Альфу Волопаса (Арктур).

Источник

Звезды главной последовательности

На этапе главной последовательности пребывает большая часть звезд, включая и Солнце. Какую же роль он играет в эволюции звезд?

Развитие звездных небесных тел во Вселенной начинается с холодного облака молекулярного водорода и гелия. Гравитация притягивает материал и нагревает его. 100000 лет тратится на фазу протозвезды, а затем переходит в Т Тельца, где сверкает лишь той энергией, что выделяется из-за гравитационного коллапса (100 миллионов лет).

В итоге, давление и температура поднимаются на нужный уровень, чтобы активировать ядерный синтез (трансформация атомов водорода в гелий). Это и есть главная последовательность. Если брать нашу звезду Солнце, то 20% от радиуса – ядро. Внутренняя энергия должна медленно пройти через радиационную зону, где поглощаются фотоны, а после повторно излучаются.

Далее идет переход сквозь конвективную зону, горячая плазма транспортирует нагретый газ к поверхности, а дальше в пространство. Материал остывает и снова падает в звезду, где повторно нагревается. На подобное путешествие может уйти больше 100000 лет.

Приходит время, и водород заканчивается. Но главная последовательность еще длится, потому что остается гелий. Солнце продолжает эту фазу уже 4.5 миллиардов лет и продлится еще 7.5 миллиардов до полного истощения. Интересно, что наименьшие карликовые звезды способны протянуть 10 триллионов лет. А вот гиганты живут лишь пару миллиардов или миллионов. Все основывается на массе.

Смерть звезды на небе также отличается. Красные карлики просто прекратят все процессы и трансформируются в белые карлики. Звезды с 10-ю солнечными массами станут красными гигантами, а затем уже белыми карликами. Ну, а наиболее массивные взорвутся в виде сверхновых.

Источник

Звезда главной последовательности вдесятеро уступает солнцу по светимости что это за звезда

Рассмотрите таблицу, содержащую сведения о ярких звёздах.

Наименование

воды

Альдебаран 3600 5,0 45 77,7 · 10 –5
α Центавра А 5730 1,02 1,2 0,80
ε Возничего В 11000 10,2 3,5 0,33
Солнце 6000 1,0 1,0 1,4
Сириус В 8200 1 2 · 10 –2 1,75 · 10 6
Сириус А 9250 2,1 2,0 0,36
Капелла 5200 3,3 23 4 · 10 –4
Ригель 11 200 40

138 2 · 10 –5

Выберите два утверждения, которые соответствуют характеристикам звёзд.

1) Звезда Сириус А относится к звёздам главной последовательности на диаграмме Герцшпрунга — Рассела.

2) Звезда Ригель относится к сверхгигантам.

3) Наше Солнце имеет максимальную массу для звёзд главной последовательности на диаграмме Герцшпрунга — Рассела.

4) Звезда Сириус В относится к звёздам главной последовательности на диаграмме Герцшпрунга — Рассела.

5) Звезда Центавра А относится к белым карликам.

Проверим правильность утверждений.

1) К главной последовательности на диаграмме Герцшпрунга — Рассела относятся звезды радиус которых находится в пределах от 0,1 до 10 радиусов Солнца. Радиус звезды Сириус А равен 2 солнечным радиусам, а значит, она относится к звездам главной последовательности. Утверждение 1 — верно.

2) Высокая температура, масса и радиус Ригеля позволяют отнести его сверхгигантам. Утверждение 2 — верно.

3) Солнце не обладает максимальной массой среди звёзд главной последовательности на диаграмме Герцшпрунга — Рассела. Утверждение 3 — неверно.

4) Белые карлики представляют собой компактные звёзды с массами, сравнимыми или большими, чем масса Солнца, но с радиусами в 100 раз меньшими. Звезда Сириус В является белым карликом и не относится к звёздам главной последовательности. Утверждение 4 — неверно.

5) По своим характеристикам звезда Центавра А относится к звездам главной последовательности. Утверждение 5 — неверно.

Источник

Диаграмма Герцшпрунга – Рассела: главная последовательность звезд

Главная последовательность диаграммы Герцшпрунга — Рессела и исключения из правил (красные гиганты и карлики)

В 1910 году датский астроном Эйнар Герцшпрунг предложил диаграмму показывающую зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды.

Как оказалось позже, практически такую же диаграмму построил и американец Генрих Нортон Рассел, правда несколько позже.

Вот так диаграмма Герцшпрунга – Рассела и выглядит. Наше Солнце находится почти ровно посередине главной последовательности – то есть «в самом расцвете сил»

Что такое главная последовательность диаграммы Герцшпрунга — Рессела

Нам открытие двух астрономов известно как диаграмма Герцшпрунга — Рессела, или диаграмма спектр — светимость.

По горизонтальной оси диаграммы Герцшпрунга — Рессела были отложены спектральные классы в порядке понижения температур звезд, начиная со спектрального класса О (очень горячие звезды) слева и заканчивая спектральным классом М (относительно холодные звезды) справа.

По вертикальной оси были отложены светимости или абсолютные звездные величины. Каждая звезда имеет какую-то определенную абсолютную величину и относится к какому-то определенному спектральному классу, а потому может быть представлена точкой в определенном месте диаграммы.

В среднем чем горячее звезда, тем она ярче. Поэтому чем левее находился на диаграмме спектральный класс исследуемой звезды (и значит, чем больше была ее температура), тем выше оказывалась она по шкале абсолютных величин.

В результате большинство звезд, нанесенных Ресселом на диаграмму, расположилось по диагонали от верхнею левого угла к нижнему правому. Они образуют так называемую главную последовательность.

По современной оценке более 90% всех доступных нашему наблюдению звезд попадают на главную последовательность.

Вас может заинтересовать

Диаграмма Герцшпрунга — Рессела даёт возможность (хотя порой и достаточно приблизительно) найти абсолютную величину нужной звезды по её спектральному классу (особенно точно это работает для спектральных классов O—F), оценить её примерный возраст и представить ближайшее будущее и прошлое наблюдаемого объекта.

С красными звездами (о них подробно ниже) ситуация обстоит сложнее – здесь не всегда можно сходу различить гиганта и карлика, однако при наличии опыта, даже здесь не должно возникнуть ошибок.

Теория скользящей эволюции звезд

Когда диаграмма Герцшпрунга — Рессела только составлялась, представления о ядерных реакциях в недрах звезд были еще весьма смутными. Господствовало мнение, что звезды на протяжении всей своей жизни непрерывно сжимаются.

С этой точки зрения диаграмма Герцшпрунга— Рессела, казалось, давала четкую и захватывающую картину звездной эволюции, показывая, как звезды возникают, проходят через различные стадии и в конце концов перестают излучать.

Выводы, сделанные Ресселом на основании этой диаграммы, можно коротко изложить следующим образом:

  1. Сначала звезда представляет собой скопление холодного газа, которое медленно сжимается.
  2. По мере сжатия звезда нагревается и на первых стадиях излучает почти исключительно в инфракрасной области спектра — это инфракрасный гигант вроде Эпсилона Возничего.
  3. Продолжая сжиматься, она раскаляется настолько, что излучает уже ярко-красный свет, как Бетельгейзе и Антарес.
  4. Звезда продолжает сжиматься и нагреваться, становясь желтым гигантом, меньшим по размерам, но более горячим, чем красный гигант, а потом голубовато-белой звездой — еще меньше и еще горячее.
  5. Голубовато-белая звезда класса О не намного больше Солнца, но гораздо горячее его — температура ее поверхности достигает 30 000°С, т.е. она в пять раз выше температуры поверхности Солнца. Максимум ее излучения находится в сине-фиолетовой области видимого спектра и даже в ультрафиолетовой, чем и объясняется ее цвет.
  6. Переходя от стадии холодной туманности в голубовато-белую стадию, звезда перемещается в верхней части диаграммы Герцшпрунга—Рессела справа налево, пока не достигает верхнего левого конца главной последовательности.
  7. Теперь звезда продолжает сжиматься под влиянием тяготения, но по какой-то причине более не нагревается. Одно из ранних объяснений этого факта заключалось в том, что на стадии голубовато-белой звезды вещество ее достигает такой плотности, что уже теряет свойства газа. При дальнейшем сжатии все большая часть ядра звезды перестает быть газом, а из-за этого по какой-то причине пропорционально сокращается выделение тепла.
    Поэтому голубовато-белая звезда одновременно и сжимается, и остывает, быстро слабея под влиянием обоих этих факторов. Она становится желтым карликом, как наше Солнце, потом красным карликом, как звезда Барнарда, и, наконец, гаснет совсем и превращается в черный карлик — пепел догоревшей звезды.

Вот так схематично на диаграмме Герцшпрунга – Рассела показана эволюция «типичной» звезды

По этой гипотезе, сжимаясь из голубовато-белой звезды до последней стадии — стадии черного карлика, звезда как бы скользит по главной последовательности из верхнего левого угла к нижнему правому. Поэтому такую теорию можно назвать теорией скользящей эволюции звезд.

Схема выглядела очень заманчивой и казалась весьма правдоподобной.

Во-первых, именно такого непрерывного сжатия, сопровождающегося сначала нагреванием, а потом остыванием, было естественно ожидать. Газ, сжимаемый в лабораторных экспериментах, становился горячее, раскаленные предметы, предоставленные сами себе, остывали.

Далее, если одна и та же звезда являлась красным гигантом где-то на раннем этапе своего существования и красным карликом в конце жизни, следовало ожидать, что средняя масса красных карликов не очень отличается от средней массы красных гигантов. Другими словами, красные гиганты колоссальны не потому, что содержат огромные количества звездною вещества, а только потому, что их вещество распределено в огромном объеме.

Так и оказалось. Красные гиганты отнюдь не столь массивны, как можно было бы ожидать, судя по их размерам, а только очень разрежены. Вещество звезды вроде Эпсилона Возничего, если бы его удалось без изменений перенести в земную лабораторию, показалось бы (в большей части своего объема) просто пустотой.

Действительно, массы звезд в среднем удивительно сходны. Как ни разнятся звезды объемом, плотностью, температурой и другими свойствами, массы их различаются мало. Масса большинства звезд колеблется от 0,2 до 5 масс Солнца.

Однако теория скользящей эволюции звезд при всей её изящности, не объясняет некоторых моментов. Вернее, содержит очень и очень необычные исключения.

Исключения из главной последовательности диаграммы Герцшпрунга — Рессела: красные гиганты и красные карлики

Когда для целого ряда звезд были получены сведения о их светимости и о температуре их поверхности, следующим логическим шагом было сопоставление этих данных. Эксперименты с раскаленными предметами на Земле давали основание предполагать, что чем холоднее звезда, тем слабее будет ее излучение и тем более красной она окажется. Но выяснилось, что это далеко не всегда так.

Например, если согласиться со значениями температуры, принятыми для спектральных классов, то наиболее холодными из обыкновенных звезд должны быть звезды класса М. По их спектральным линиям и положению максимума излучения типичная температура поверхности для звезд этого класса была оценена в 2500°С (напомним для сравнения, что температура поверхности нашего Солнца составляет 6000°С). И действительно, все звезды класса М были красноватыми, по вопреки ожиданиям они не все были слабыми.

Правда, многие из них были-таки слабыми, хотя некоторые (например, звезда Барнарда) и находились совсем близко. Однако другие, вроде Бетельгейзе в созвездии Ориона или Антареса в Скорпионе, были красноватого цвета, но тем не менее казались очень яркими. И не потому, что находились так уж близко от нас. Они обладали не только большой видимой яркостью, но и большой светимостью. Излучение Антареса, например, почти в 10 000 раз превосходит излучение Солнца.

Еще в 1905 г. Э. Герцшпрунг, размышляя над этим вопросом, пришел к выводу, что такая большая светимость холодной звезды может объясняться только ее гигантскими размерами. Поверхность холодной звезды дает гораздо меньше света с квадратного километра, чем поверхность Солнца, но, с другой стороны, у такой звезды, как Бетельгейзе, квадратных километров поверхности могло быть несравненно больше, чем у Солнца.

И это более чем возместило бы относительно малую яркость каждого квадратного километра в отдельности. Поэтому такие звезды, как Бетельгейзе и Антарес, стали называться красными гигантами, а такие, как звезда Барнарда,— красными карликами.

Это было тем более любопытно, что промежуточных красных звезд, не гигантов и не карликов, как будто не существовало вовсе.

Это предположение Герцшпрунга, основанное на теоретических рассуждениях, было подтверждено результатами наблюдений. Американский физик немецкого происхождения Альберт Абрахам Майкельсон (1852—1931) изобрел в 1881 г. прибор, названный интерферометром.

Этот прибор, отмечавший мельчайшие изменения в картине усилений и ослаблений световых волн, позволял производить удивительно точные измерения. С его помощью удалось узнать о звездах то, что не показал бы ни один телескоп.

Даже ближайшие звезды так далеки от нас, что и в самые лучшие современные телескопы они видны только как светящиеся точки. Тем не менее попадающие в телескоп лучи данной звезды исходят не из одной точки ее поверхности. Один луч может приходить от ее западного края, а другой — от восточного. Эти лучи попадают в телескоп под некоторым углом друг к другу — углом, слишком малым для того, чтобы его можно было измерить обычными способами, но иногда достаточно большим, чтобы лучи “сталкивались” и складывались друг с другом.

Прибор Майкельсона позволил измерять результат такого сложения и определять угол между лучами, если он только не был ничтожно малым. Зная этот угол и расстояние до звезды, можно легко вычислить ее действительный диаметр.

Результаты были поразительными. Диаметр Бетельгейзе был измерен таким способом в 1920 г. и оказалось, что он равен 500 000 000 км. Он почти в 350 раз больше диаметра Солнца (1 390 600 км). Следовательно, поверхность Бетельгейзе примерно в 350X350, т. е. в 120 000 раз больше поверхности Солнца. Неудивительно, что светимость этой звезды гораздо больше светимости Солнца, хотя светимость каждого квадратного километра ее поверхности гораздо меньше.

Что касается объема Бетельгейзе, то он примерно в 40 000 000 раз больше объема Солнца. Если бы Бетельгейзе оказалась на месте Солнца, она заполнила бы все пространство далеко за пределы орбиты Марса. Да, это поистине красный гигант!

Опять же диаграмма Герцшпрунга – Рассела как и на первом изображении, но без отвлекающих цветов и надписей.

Красные гиганты и… инфракрасные гиганты

Антарес несколько меньше Бетельгейзе, но эта последняя — отнюдь не самая большая из подобных звезд. Например, Эпсилон Возничегоинфракрасный гигант, звезда настолько холодная, что, несмотря на ее чудовищные размеры, мы ее не видим. Ее излучение почти целиком лежит в инфракрасной области. Мы знаем о ее существовании только потому, что у нее есть яркий спутник, который она периодически затмевает.

В 1937 г. на основании продолжительности затмения и расстояния до системы было высказано предположение, что эта темная звезда — инфракрасный гигант с диаметром 3 700 000 000 км. Если бы она оказалась на месте Солнца, то заполнила бы все пространство вплоть до орбиты Урана!

И инфракрасные гиганты вовсе не так редки, как казалось вначале. Но звезду, настолько холодную, что она излучает почти исключительно в инфракрасной части спектра, очень трудно обнаружить.

Во-первых, земная атмосфера не очень прозрачна для инфракрасных лучей, а во-вторых, все предметы на самой Земле достаточно теплы и обладают заметным собственным инфракрасным излучением, в результате инфракрасное излучение, приходящее к нам из космического пространства, теряется, так сказать, в общем зареве.

Однако в 1965 г. астрономы обсерватории Маунт-Вилсон разработали особую методику для поисков в небе областей, богатых инфракрасным излучением, которое указывает на присутствие инфракрасных гигантов Они обнаружили сотни подобных объектов, сосредоточенных по большей части в плоскости Млечного Пути, но можно ожидать, что их будут найдены тысячи. И хотя бы некоторые из них, несомненно, окажутся больше, чем Эпсилон Возничего.

В инфракрасной области они, собственно, очень ярки, но в видимой части спектра их излечение чрезвычайно слабо, так что даже в самые сильные телескопы видны лишь немногие из них. Две из обнаруженных звезд имеют, судя по их цвету, температуру 1200 и 800°К — вторая звезда нагрета только-только до температуры красного каления.

У звезд других цветов нет такого разрыва в размерах, как у холодных красных звезд. И все же существуют большие желтые гиганты (не такие огромные и холодные, как красные) и маленькие желтые карлики (не такие маленькие и холодные, как красные). В качестве примера желтого гиганта можно назвать Капеллу, а в качестве желтого карлика — наше Солнце.

Подводя итог, хочу ещё раз отметить – красные гиганты и карлики в общей картине диаграммы Герцшпрунга — Рессела являются исключением и их процент по сравнению с “правильными” звездами, полностью укладывающимися в канву главной последовательности диаграммы, относительно не велик.

Во всяком случае более наглядной, простой и в целом правильной теории эволюции звезд, чем теория скользящей эволюции выводимая из фактов наглядно представленных в диаграмме, у нас нет. Поэтому остается только отдать должное гению астрономов прошлого и… конечно же смело использовать их наработки!

Источник

Adblock
detector