Меню

Вращение магнитного поля солнца

Вращение магнитного поля солнца

Как выглядит магнитное поле в пятнах?

в первом приближении [поле пятна], сходно с полем верхушки соленоида с осью слегка наклоненной к нормали, как это показано на рис.
В пользу этой модели может быть высказано следующее соображение. Меньшей температуре пятна при той же плотности газов соответствует меньшее газовое давление, чем в окружающей пятно атмосфере, и недостаток газового давления в пятне возмещается магнитным давлением.

Для этого под видимым нами пятном должен находиться более или менее вертикальный пучок силовых линий магнитного поля, давление которого препятствует проникновению внутрь пятна более горячего газа из окружения и опусканию пятна вниз.

Из наблюдений следует, что полярность общero магнитного поля Солнца (напряженность этого поля достигает 1 эрстеда) время от времени изменяется. Поэтому был сделан вывод, что общее магнитное поле не может пронизывать все Солнце, а располагается в его поверхностных слоях толщиной до 0,1 солнечного радиуса (

На Солнце магнитное поле захватывается горячим веществом или «вмораживается» в него. При своем движении солнечное вещество увлекает за собой столько магнитного поля, сколько сможет. Так как скорость вращения на экваторе опережает скорость вращения на полюсах, силовые линий магнитного поля растягиваются, но линии поля при таком наматывании не обрываются; они скорее похожи на чрезвычайно эластичную резину. Как и у резины, чем больше они растягиваются, тем больше в них запас энергии.

Рассмотрим простую модель Солнца: чисто дипольное поле, как, например, у обычного стержневого магнита, с невозмущенными силовыми линиями, соединяющими полюса и располагающимися в меридиональных плоскостях (полоидальное поле). Затем заставим его вращаться, причем вещество на экваторе пусть вращается быстрее, чем вещество на более высоких широтах. Через несколько десятков оборотов линии первоначального простого поля обмотаются несколько раз вокруг Солнца. Этот процесс продолжается и далее, и каждый раз, когда экватор совершает один оборот относительно полюса, магнитные тиски вокруг Солнца сжимаются сильнее, стягивая силовые линии все теснее и теснее. Более того, то, что когда-то было магнитным дипольным полем, постепенно превращается в сильное поле, по форме напоминающее [бублик] пончик (или тороидальное поле).
Так происходит превращение полоидального поля в тороидальное, силовые линии которого параллельны экватору.

Омега- и Альфа- эффекты и «переполюсовка»

Омега-эффект — это намотка тороидального магнитного поля. Такая намотка происходит на Солнце всегда, пока есть полоидальное магнитное поле и дифференциальное вращение. «Магнитная «шпулька» на Солнце непрерывно работает!» 2
Альфа-эффект производит обратное преобразование тороидального магнитного поля в полоидальное, чтобы замкнуть цикл.
Примерно каждые 11 лет общее магнитное поле Солнца меняет знак. «Переполюсовка» полоидального магнитного поля происходит вблизи максимума солнечной активности, когда число пятен на Солнце максимально (максимум потока тороидального магнитного поля).

Силовые линии теснят друг друга. В конце концов, какое-то из полей (дипольное или тороидальное) должно уступить.
Когда напряженность поля в какой-либо части внешних слоев достигает примерно 10 000 Гс (это приблизительно в 100 000 раз больше напряженности поля Земли), магнитное давление становится достаточно сильным для того, чтобы уравновесить силу солнечного притяжения. Теперь плазма закручивается и свивается в жгуты, запутывая силовые линии еще больше (см. схему на шапке страницы), благодаря перемешиванию внешних слоев за счет конвекции. Поле запутывается в виде беспорядочно переплетающихся жгутов или узлов.
Местами оно прорывается через фотосферу, образуя области всплывающего потока, которые являются первой стадией образования солнечной активной области. Линии нового магнитного поля таким образом, поднимаются на поверхность Солнца. Области, в которых они выходят на поверхность, имеют биполярную структуру в виде пары северного и южного магнитных полюсов.

Схема выхода магнитного поля на поверхность Солнца.

На некотором этапе закручивания силовых линий наступает неустойчивость магнитных полей и их распад на отдельные силовые трубки. Полное давление внутри трубки, равное сумме давления магнитного поля и давления газа, уравновешивается газовым давлением вне трубки. Так как температура вне и внутри трубки одинакова, то это означает, что плотность внутри трубки меньше, чем вне ее. Поэтому на силовую трубку действует сила, направленная вверх. В расчете на единицу объема эта сила названа магнитной плавучестью. Анализ показал, что при определенной длине силовая трубка всплывает на поверхность. При этом образуются пятна противоположной полярности.

Топология магнитных полей солнечных пятен (Babcock H.W.)

Гигантские корональные петли (на снимке слева) вместе с меридиональной циркуляцией и диффузионной турбулентностью играют очень важную роль в полярных инверсиях [преобразованиях] магнитного поля. Часть энергии магнитного потока от средних широт идет на нагрев плазмы в этих петлях.
(илл. Соловьев А.А.)

Впервые биполярная структура наблюдалась в солнечных пятнах в начале XX столетия. Эта стадия может сопровождаться яркой флоккульной областью. Примерно через день возникает и сама пара солнечных пятен, и оба пятна связывает арочная структура волокон, которая, по-видимому, очерчивает структуру магнитного поля.

Эти арочные волокна могут достигать в длину 30 000 км и иметь высоту, равную 5 000 км, другими словами, могут быть много больше Земли.

Внутри области, занятой солнечными пятнами, магнитное поле в виде трубки выходит из одного пятна и, образуя арку, входит в другое. Эта картина естественным образом объясняет двойную полярность и также хорошо согласуется с наблюдениями арочных волокон. Наблюдения с космических аппаратов, особенно наблюдения активных областей, позволяют теперь проследить эту структуру и значительно выше фотосферы.

Меридиональная циркуляция
(илл. из работы Соловьев А.А.)

Магнитное поле пятен подавляет конвекцию в верхних слоях конвективной зоны, перенос энергии здесь резко уменьшается, поэтому температура газа в области пятна уменьшается на 1 500—2 000 К. В близких же окрестностях пятна, где напряженность поля относительно невелика, магнитное поле, наоборот, усиливает конвективный перенос энергии. Именно так и возникают яркие образования — факелы.

Оценки показывают, что плавучесть эффективна до глубин порядка 15 000 км, тогда как толщина конвективной зоны примерно в семь раз больше. Отсюда следует, что магнитные поля пятен формируются в верхней части конвективной зоны Солнца.
В связи с этим возникает следующий вопрос: каким же образом поддерживается неоднородное вращение Солнца? Ведь усиление магнитных полей и образование магнитных трубок происходит за счет торможения вращательного движения экваториальных областей, и если бы эта энергия не поступала непрерывно, то уже после нескольких оборотов Солнце начало бы вращаться как абсолютно твердое тело, т. е. угловая скорость вращения у полюсов и на экваторе была бы одинаковой.

Согласно существующим предположениям, неоднородность вращения Солнца поддерживается меридиональной циркуляцией — медленным движением вещества в меридиональной плоскости (по направлению от полюсов к экватору и наоборот). В свою очередь это движение поддерживается движениями в конвективной зоне, а последние — источниками ядерной энергии, находящимися глубоко в недрах Солнца.

Современные данные о течениях на поверхности Солнца предоставляют инструменты Global Oscillation Network Group (GONG) и Michelson Doppler Imager (MDI) на борту станции SOHO. Оба этих инструмента определяют скорость движения плазмы путем измерения Допплеровского смещения спектральных линий.

Одной из основных задач, которая решается по данным GONG и MDI, является разделение различных компонент движения плазмы, в частности отделение компоненты скорости, связанной с течениями плазмы от компоненты, вызванной осцилляциями солнечной поверхности.

Эти усредненные изображения затем анализируются с целью отделить компоненту движения, связанную с вращением Солнца, от компонент, связанных с конвекцией и с меридиональными течениями. [здесь приведен] пример такого анализа, проведенный на основе наблюдений солнечной вспышки от 25 мая 1995 года. В результате ее исследования удалось определить все три компоненты движения (рис. ниже). Во-первых, получена картина дифференциального вращения поверхности Солнца, во-вторых определены направления и скорости меридиональных течений плазмы, и наконец восстановлена картина супергрануляции, связанная с конвекцией.


Три компоненты движения плазмы на повехности Солнца:
дифференциальное вращение, меридиональные течения и осцилляции солнечной поверхности.
Получены с помощью инструментов GONG и MDI (Источник: Энциклопедия Солнца)

Астрофизики, опираясь на уже известные знания о природе солнечной активности, продолжают разрабатывать теории, охватывающие весь комплекс этих грандиозных явлений.

Краткое изложение современных моделей магнитных полей Солнца и циклов солнечной активности можно посмотреть в презентации д-ра ф-м.н Соловьева А.А. «Роль меридиональной циркуляции в развитии солнечного цикла» (ГАО РАН), представленной 17.02.2009 в ИКИ РАН.
(ссылка ниже)

Картинка внизу: Компьютерная 3D модель п́ары солнечных пятен созданная суперкомпьютером BLUEFIRE в High Altitude Observatory National Center for Atmospheric Research (NCAR). Boulder, Colorado, USA (июль 2009). Это п ервое представление того, что находится ниже поверхности солнечных пятен. Более светлые (яркие) цвета указывают более сильную напряженность магнитного поля в этом поперечном сечении подслоя двух солнечных пятен.

Источник

Магнитное поле Солнца

Под верхним слоем фотосферы (солнечной поверхности) расположена конвективная зона Солнца. Именно внутри нее, как говорят современные ученые, и зарождается магнитное поле звезды. Невозможно представить, несколько большое значение имеет в происходящих на Солнце процессах магнитное поле. Скорее всего, оно есть ответом на все активные явления, которые происходят в атмосфере Солнца, включая и солнечные вспышки. То есть без него Солнце было бы не таким интересным для изучения человечеством.

Схема магнитного поля Солнца

Берут свое начало под влиянием магнитного поля практически все объекты, зафиксированные на Солнце. В первую очередь – это солнечные пятна, обозначающие собой места выходящих из недр Солнца гигантских магнитных петель, пересекающих солнечную поверхность. Из-за этого пятна обычно состоят из северной и южной магнитной полярности. Эти области равны основам магнитной трубки, которая выходит из недр Солнца. На циклы солнечной активности также влияет цикличность колебаний магнитного поля, которое происходит в недрах Солнца. Парящие над поверхностью Солнца протуберанцы, зрительно как бы висящие в пустоте, на самом деле пронизаны нитями магнитного поля, основываясь на нем. А также стримеры и петли, которые мы часто наблюдаем в короне Солнца, есть простым повторением формы топологии магнитных полей, что их окружают. Понимание всего этого позволяет вычислить, какая магнитная обстановка на Солнце ожидает нас сегодня и в любой другой день.

Методы измерения магнитного поля Солнца

Заряженные частицы, попадающие в магнитное поле, движутся под его влиянием. При этом электроны, движущие вокруг ядра правосторонне, под влиянием магнитного поля энергию увеличивают, левосторонне движущиеся – ее соответственно уменьшают. Этот так называемый эффект Зеемена расщепляет излучение атома на компоненты. Измеряя величину расщепления, мы имеем возможность узнать величину и направленность магнитных полей далеких объектов, которые невозможно исследовать непосредственно, например, Солнце. Определить с высокой точностью величину поля солнечной поверхности позволяют разработки последних лет, но они часто бездейственны при намерении измерить трехмерного поля в короне Солнца. В этом случае помогает использование методов математики.

Делать правдивые предсказания погоды космоса помогает знание природы и жизнедеятельности магнитного поля Солнца. Ожидание новой активной вспышки на Солнце можно определить в настоящее время по многим косвенным признакам. Однако на данном этапе научных процессов, относительно долгосрочных предсказаний времени и продолжительности протекающих солнечных циклов, остаются неточными. Они основываются больше на выведении эмпирических зависимостей, а не на конкретных физических моделях. Ближайшее будущее, надеемся, сможет разъяснить достаточно хорошо поведение и активность Солнца, и даст возможность, правильно смоделировав его активность, предсказывать погоду космоса не хуже погоды на Земле. Хотя уже сейчас можно точно сообщить о наличии магнитной бури на Солнце сегодня или в любой календарный день.

Источник

Смена активности и магнитных полюсов солнца

Известно, что Солнце, Земля и большинство других планет Солнечной системы имеют свои магнитные поля. Основными характеристиками их является наличие магнитных полюсов, соединенных магнитной осью с определенным углом наклона. Их расположение и направление чаще всего не совпадает с так называемыми географическими полюсами и осями, вокруг которых вращаются планеты. В отличии от них магнитные полюса не имеют четкого фиксированного положения. Время от времени, с определенной периодичностью, они не только перемещаются, но и, могут, поменяться местами. Так примерно раз в 11 лет происходит смена магнитных полюсов у Солнца. При этом северный полюс постепенно переходит на место южного полюса, а южный — на место северного. Все это происходит в течение определенного времени совершенно незаметно для человечества. Однако до настоящего времени отсутствует не только научное объяснение, но и более-менее приемлемая гипотеза причины этого явления.

Согласно проведенным исследованиям, свойство магнитного поля Солнца существенно отличается от Земного. Оно крайне нестабильно и не поддается такому простому описанию, как дипольное поле Земли. Магнитное поле на Солнце является далеко не единственным. На него накладываются магнитные поля солнечных пятен. Они имеют величину в несколько тысяч гаусс. Это – холодные тёмные образования на поверхности солнца, часто имеющие форму круга. Количество пятен на Солнце зависит от его активности. Изменение их количества от минимума до максимума и обратно, называется солнечным циклом. Его средняя продолжительность составляет около 11 лет. В конце цикла, в период максимальной активности, происходит смена магнитных полюсов Солнца.

При существующей, относительно небольшой периодичности, смена полюсов Солнца повторялась уже большое количество раз, но до сих пор не нашла научного объяснения.

Все данные явления легко объясняются использованием предложенной мною гипотезы извержения вулканов и наличия суперзвезд (ГИВиНС) [1, с. 194]. Суть этой гипотезы схематично представлена на рисунке 1. Она заключается в том, что звезды – это не небесные тела в виде газового шара, а жерла вулканов, заполненные светящимся звездным веществом. Они располагаются на твердой поверхности гигантских суперзвезд сферической формы и связаны каналами с их внутренней частью (полостью), содержание которой аналогично существующему составу звезд. Суперзвезда вращается вокруг собственной оси и центра галактики.
Учитывая относительно огромные размеры суперзвезд, можно предположить, что на поверхности каждой из них может находиться большое количество звезд (жерл), различного диаметра. Все они соединяются каналами (жерлами) с одним общим центром, где протекают термоядерные реакции. Оболочка суперзвезд представляет собой твердую корку, которая по химическому составу соответствует планетам земной группы.

Рождение звезды вызвано началом извержения, под действием внутреннего давления, с поверхности суперзвезды вулкана и сопровождается мощным выбросом похожим на взрыв. При этом из жерла вулкана, с закручиванием против часовой стрелки по спирали выбрасывается не густая лава, а большое количество газа, фотонов, раскаленных (расплавленных) и прочих частиц (сгустков) материала, а также крупных и мелких твердых частиц оболочки, образующих в последующем планеты и туманность. Продукты извержения вулкана имеют форму расширяющегося конуса, аналогично смерчу (торнадо).

Гипотеза процесса образования суперзвезд и рождения звезды изложена в источнике [2, с. 239].

Наблюдениями за Солнцем установлено, что скорости вращения различных участков его поверхности существенно отличается. Экваториальная часть Солнца совершает полный оборот вокруг своей оси за 25 земных суток, а участки вблизи полюса за 36 дней. Поэтому условно принято, что Солнце совершает один полный оборот вокруг своей оси примерно за 1 месяц.

Это больше напоминает движение поверхности жидкости, налитой в емкость с круглой поверхностью, вращающуюся по окружности с достаточно большой скоростью. При этом будет иметь место более быстрое перемещение поверхности жидкости в наиболее широкой его средней части (экваторе) и замедленное, вследствие торможения о стенки емкости, в наиболее узкой части (на полюсах).

Поэтому более реальной, по моему мнению, является гипотеза расположения Солнца на поверхности гигантской суперзвезды. В этом случае время вращения Солнца будет равно длительности полного оборота суперзвезды вокруг своей оси. Считаю, что это время равно полному циклу смены полюсов Солнца, с возвращением их в исходное положение, т.е. составляет около 22 земных лет.

Этот процесс схематично представлен на рисунке 2, где для наглядности принято, что ось вращения суперзвезды расположена вертикально, а ось магнитного поля почти перпендикулярно к оси вращения.

Согласно общепринятой теории Солнце и планеты Солнечной системы сформировались из одного газопылевого облака. Его вращение привело к уплотнению центральной части, где образовалось Солнце. Из остатков газопылевого облака сформировались планеты. В этом случае ось вращения Солнца должна быть перпендикулярна плоскости орбит планет. Однако на самом деле она отклонена от вертикали примерно на шесть градусов. Попытки ученых найти этому объяснение оказались безрезультатными.

Наклон оси вращения Солнца легко объясняется расположением его на поверхности суперзвезды в ее северном полушарии под углом ; = 6° к оси вращения суперзвезды. Орбита вращения Солнца А1В1А2В2А1 при этом будет располагаться вблизи северного полюса оси вращения суперзвезды.

Рассчитаем ориентировочный диаметр суперзвезды (D), используя прямоугольный треугольник ОА1О1 рисунка 2 и следующие данные:
— скорость вращения внешних видимых слоёв Солнца на экваторе V = 7284 км/ч;
— полный цикл смены полюсов Солнца, с возвращением их в исходное положение, ; = 22 земных года;
— угол отклонения оси вращения Солнца от вертикали ; = 6°;
— количество суток в году 365,25;
— продолжительность суток 24 часа.
Тогда, диаметр суперзвезды можно определить по формуле (см. рис.)

Получается, что диаметр суперзвезды в 3077 раз больше диаметра Солнца.

Длительные наблюдения за цикличностью смены активности и полюсов у Солнца показали, что возможны отклонения от графика как в одну, так и в другую сторону. Особенно значительные колебания имеют место при переходе от максимума солнечной активности к ее минимуму и наоборот. Научного объяснения этому пока нет.

Утверждение [3, с. 1], что внутри звезды может присутствовать магнитное поле, не выходящее на поверхность и поэтому недоступное для прямых астрофизических наблюдений, можно отнести к суперзвезде, т.к. ее внутренняя часть полностью соответствует существующей модели звезды. Согласно предлагаемой мной гипотезе, перемещение Солнца осуществляется в магнитном поле суперзвезды, которое находится не на твердой поверхности, а внутри ее, и поэтому вместе с ней не вращается. Ориентация направления этого поля периодически может несколько отклоняться в ту или иную сторону, вследствие перемещения магнитных полюсов суперзвезды.

Магнитные поля Солнца и суперзвезды взаимосвязаны. Магнитное поле Солнца взаимодействует с более сильным магнитным полем суперзвезды, образуя квадруполь (нижняя часть рисунка 3). При этом часть силовых линий, выходящих из северного полюса суперзвезды, падает на поверхность южного полюса Солнца, проникая в глубь его. Во время движения силовые линии увлекают за собой из около суперзвездного пространства холодные заряженные частицы и сгустки, находящейся здесь, плазмы. Падая на Солнце, они охлаждают и намагничивают его поверхность в этом месте, образуя пятна с пониженной температурой и повышенной напряженностью магнитного поля. Таким образом, на южном полюсе Солнца темные пятна — это места входа в Солнце силовых линий, выходящих из северного полюса суперзвезды и Солнца. Чем ближе располагается северный магнитный полюс суперзвезды к солнечной орбите, тем больше пятен образуется на Солнце.

Аналогично происходит выход силовых линий из северного полюса Солнца в южный полюс суперзвезды. Скопление силовых линий в месте их выхода приводит к повышению напряженности магнитного поля в этом месте. Нагрев поверхности Солнца осуществляется за счет поднимающихся из глубинных слоев высокотемпературных порций плазмы, которая может двигаться только вдоль магнитных линий. Их выход с поверхности способствует оттоку тепла вместе с ними и препятствует разогреву вещества в данном месте. Таким образом, солнечные пятна на северном полюсе Солнца возникают в тех местах, где из него выходят на поверхность силовые линии.

Исследованиями ученых давно доказано, что на Земле величина магнитного поля, по мере удаления от полюса и приближения к экватору, уменьшается. Тоже самое происходит и у суперзвезды. Поэтому, минимум солнечной активности наблюдается в те моменты, когда Солнце, при вращении по орбите, пересекает линию условного экватора магнитного поля суперзвезды в точках В1 и В2 (рисунок 2). Это происходит два раза за полный цикл оборота суперзвезды вокруг своей оси, т.е. примерно через каждые 11 лет. Аналогично этому, максимум, примерно с такой же периодичностью, наблюдается в те моменты, когда солнце находится на наиболее удаленном расстоянии от магнитного экватора суперзвезды в точках А1 и А2, наиболее близко расположенных к магнитным полюсам суперзвезды.

Одним из важных факторов, не находящих до настоящего времени четкого объяснеиия, является непостоянство продолжительности периодов смены солнечной активности. Причина колебания длительности периода между максимумом и минимумом солнечной активности заключается в перемещении магнитных полюсов суперзвезды, а, следовательно, и магнитного экватора, на котором располагаются точки минимальной активности. Исследованиями давно установлено, что на Земле относительно четкая линия существует только для географического экватора, а для магнитного — нет, т.к. магнитные полюса постоянно перемещаются с одного места на другое. Тоже самое присуще и полюсам магнитного поля суперзвезды. Учитывая относительно большую длительность цикла, можно утверждать, что смещение полюсов за это время может быть очень значительным. В связи с этим, четкой границы между северным и южным магнитными полюсами у суперзвезды нет. Она носит расплывчатый характер. Именно этим можно объяснить нестабильность процесса и колебания длительности периодов при смене солнечной активности для разных циклов.

Что касается смены магнитных полюсов, то как видно из рис. 2, если проследить по орбите движение Солнца по поверхности суперзвезды, то при прохождении им точки А2, возможны два варианта:

1 – под влиянием сильного магнитного поля южного полюса суперзвезды произойдет как бы притягивание (торможение) северного полюса солнца и отталкивание одноименного южного, т.е. произойдет переполюсовка. При дальнейшем движении также образуется магнитный квадруполь, аналогичный изображенному в нижней части на рисунке 3, но с движением Солнца в противоположную сторону. Взаимодействие силовых линий северного полюса суперзвезды с Солнцем приведет к образованию большого количества пятен на Солнце и повышению его активности. Процесс продолжится до точки А1, где произойдет такая же смена полюсов с возвратом к первоначальному состоянию. Это характеризует нормальное протекание процесса цикличности.

2 – при низкой напряженности магнитного поля южного или северного полюса суперзвезды, вследствие их значительного перемещения, фактической смены полюсов у Солнца не произойдет. Она окажется кажущейся (мнимой), т.е. поменяется только направление перемещения полюсов, если сначала (рисунок 2) южный полюс Солнца находился слева от наблюдателя, то после поворота на 180° он окажется справа от него. В этом случае, как видно из верхней части рисунка 3, нет взаимодействия силовых линий магнитного поля суперзвезды с поверхностью Солнца. Это приведет к значительному сокращению количества пятен на Солнце и увеличению длительности срока низкой его активности. Увеличение пятен на Солнце в основном вызвано взаимодействием силовых линий северного полюса магнитного поля суперзвезды с поверхностью Солнца. Удаление его от точки А1 на значительное расстояние, может привести к прекращению переполюсовки на Солнце и длительному периоду низкой активности Солнца, сопровождающемуся сильным похолоданием на Земле. Нормальная смены солнечной активности возобновится только после приближения северного полюса и нормализации переполюсовки на Солнце.

Таким образом, предложенная гипотеза позволяет аргументированно объяснить сущность всех процессов, происходящих при смене активности и полюсов у Солнца, и причины наблюдающихся при этом отклонений от нормы по длительности периодов между сменой солнечной активности.

Источник

Читайте также:  Юбка четверть солнце макси

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector