Размер Солнца
Солнце одно из значимых светил в рамках галактики Млечный путь и единственным в нашей Солнечной системе. Вокруг него происходит постоянное обращение прочих объектов в виде планет, спутников, карликовых небесных тел, астероидов, метеоритов, комет, пыли космической. Среди обывателей возникает вопрос, каков размер Солнца, наверняка это гигантский шар, превышающий Землю в несколько раз. Ответ на него будет рассмотрен в статье.
Общие описательные характеристики
В соответствии со спектральной классификацией наше естественное светило относится к группе жёлтых карликов. Оно имеет следующие показатели:
- тип объекта – G2V;
- среднее значение плотности приравнивается к отметке в 1,4 грамма на кубический сантиметр, а это в 1,4 раза больше, нежели у воды;
- эффективный показатель температуры солнечной поверхности – 5 780 К, в связи с этим, объект имеет практически белое свечение, однако околоземной поверхности оно становится жёлтым по причине чрезмерного рассеяния и поглощения определённой части спектра с короткими волнами;
- в составе объекта присутствует водород (92% от объёма), гелий (7%), железо, сера, углерод, кремний и т. д.;
- в составе солнечного спектра присутствуют линии металлов, которые являются ионизированными и нейтральными, а также гелия, водорода;
- количество светил во всей галактике – 100-400 млрд единиц, и 85% от их числа являются звёздами менее яркими, нежели Солнца.
Солнечное излучение выступает в качестве базового источника энергетической силы на планете Земля. Излучение, пробираясь через земную атмосферу, утрачивает энергию в величине 370 Ватт на квадратный метр.
Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.
Масса
Размер Солнца, определяется значением его массы, которое составляет 1,98892 *10 30 кг. Если написать это значение, используя нули, их суммарное количество получится равным 25. А это в 333 тысячи раз больше, чем Земля, в 1048 – чем Юпитер, в 3 498 – чем Сатурн. Практические наблюдения показывают, что с течением времени размер Солнца уменьшается. Связано это явление с двумя факторами:
- реакции, протекающие в ядерной части, способствующие преобразованию водородных атомов в гелий;
- наличие солнечного ветра, выдувающего протоны и электроны во внешнее космическое пространство.
Физические характеристики Солнца
Диаметр
Диаметр Солнца составляет 1,391 млн км или 870 тыс. миль. Если рассмотреть сравнение с Землёй, получится число 109, с Юпитером – 9,7. Несмотря на эти огромные размеры, диаметр Солнца намного меньше, нежели этот же показатель у других светил. К примеру, если сравнивать его с самой крупной звездой, получится, что диаметр Солнца в 2 100 раз меньше.
Радиус
Радиус Солнца равен 695, 5 тыс. км. Это значение измеряется от точной центральной части до поверхности. Это такое же значение, что получается при измерении от центра до экватора или от центра до полюсов Солнца. Однако с другими объектами стоит соблюдать осторожность, так как скорость их вращения оказывает воздействие на радиус. Радиус Солнца, если считать его в милях, составляет 432 000 единиц. В сравнении с планетой Земля он превосходит её ровно в 109 раз.
Чтобы сделать один оборот вокруг собственной оси, светилу потребуется 25 дней, ведь его вращение является крайне медленным. Тем не менее, светило не сплюснуто, а дистанция от центральной части до полюсов является такой же, что и удалённость между центром и экватором. Исследования и гипотезы учёных гласят, что в других галактиках есть звёзды, существенно отличающиеся от Солнца.
Корональные выбросы массы на Солнце. Струи плазмы вытянуты вдоль арок магнитного поля
К примеру, светило ACHERNAR является на 50% сплюснутым и располагается в зоне созвездия ERIDANUS. То есть его расстояние от полюсов представляет собой половину отдалённости от экваториальной части. В сравнении с такими объектами Солнце выглядит как идеальная сфера, а не как игрушка «волчок».
Астрономами, радиус Солнца используется в сравнения размерных показателей звёзд и прочих астрономических объектов. К примеру, звезда, имеющая два солнечных радиуса, обладает размерами, которые в 10 раз больше в сравнении с Солнцем. В свою очередь, полярная звезда является наиболее крупной, а в связи с приближённостью к северному астрономическому полюсу она считается текущей и применяется в целях навигации. Она содержит в себе 30 солнечных радиусов.
Сириус – самое яркое светило, которое можно заметить на ночном небе, занимает второе место по показателю светимости. Выделяется он по причине крупных размеров. На самом деле, объект является бинарной, а его радиус равен 1,711 солнечных значений.
Гравитация
Масса нашей единственной звезды огромна, поэтому сила гравитации также является внушительной. По факту вес в 333 000 раз выше, чем у Земли. Не стоит принимать во внимание тот факт, что температурное значение поверхности составляет 5 800 Кельвин, а в составе преобладает водород. Что можно было бы почувствовать, пройдясь по солнечной поверхности, в этом случае? Особенно, если учесть, что гравитация в 28 раз выше, нежели у Земли.
Говорить простыми словами, при «земном» весе, равном 100 кг, на Солнце это ощущалось бы как 2 800 кг. Разумеется, пройтись по поверхности нашей звезды нереально! Гравитационная сила светила является объектом притяжения всей массы в совершенную среду. По мере приближения к ядру температура и давление повышаются настолько сильно, что возникает вероятность ядерного синтеза.
Источник
5.2. Солнце
Солнце с борта космического корабля
Солнце — типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. Как и для всякой звезды, основными характеристиками Солнца являются радиус, масса и светимость. Солнце представляется почти кругом (сжатие, обусловленное медленным вращением составляет около 10 –5 ) с резко очерченным краем, или лимбом. Т. к. у газового шара не может быть границы, то под краем Солнца понимают фотометрический край, который определяется резким спадом в распределении яркости Солнца вблизи лимба для излучения с длиной волны 500 нм.
Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 33’31», а в афелии (начало июля) — 32’35». На среднем расстоянии от Земли (1 а. е.) видимый радиус Солнца составляет 960″, что соответствует линейному радиусу RSun = 149.6 × 10 6 км × 960″/206265″ = 696000 км ≈ 109RTerra. Поверхность сферы, описанной вокруг центра Солнца радиусом RSun, можно назвать условной поверхностью Солнца потому, что она близка к верхнему слою основной, самой глубокой части солнечной атмосферы (фотосферы), где достигается температурный минимум и наибольшая непрозрачность газов. Именно эти их свойства и обеспечивают резкость видимого края Солнца. Масса Солнца может быть найдена из третьего закона Кеплера, применённого для Солнца и какого-либо из обращающихся вокруг него тел: MSun = 1,99 × 10 33 г ≈ 2 × 10 30 кг = 330000mTerra. Средняя плотность вещества Солнца ‹ρ› = 1.41 г/см 3 .
Энергетическая освещённость от Солнца на расстоянии 1 а. е. называется солнечной постоянной и определяется как полное количество лучистой солнечной энергии, проходящей за единицу времени через единицу площади, перпендикулярной направлению на Солнце и расположенную за пределами земной атмосферы на расстоянии 1 а. е. В настоящее время значение солнечной постоянной известно с погрешностью около ±0,3%: Q = 1366 ± 4 Вт/м 2 . Произведение этой величины на площадь сферы радиусом 1 а. е. даёт полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т. е. его болометрическую светимость, которая равна 3,84 × 10 26 Дж/с. Единица условной поверхности Солнца (1 м 2 ) излучает 63,1 МВт.
5.2.2. Спектр и излучение в различных областях спектра. Химический состав
Спектр солнечного излучения
Почти всё наблюдаемое солнечное излучение (за исключением потока нейтрино, возникающих в центре Солнца) приходит из внешних слоёв Солнца, которые называются солнечной атмосферой.
В видимой области излучение Солнца имеет непрерывный спектр, на который накладывается несколько десятков тысяч тёмных линий поглощения, называемых фраунгоферовыми по имени немецкого физика Йозефа Фраунгофера, описавшего эти линии в 1814 г. Наибольшей интенсивности непрерывный спектр достигает в сине-зелёной части спектра, в области длин волн 4300 – 5000 Å. В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в коротковолновую (УФ и далее) и длинноволновую (ИК и далее) области. Результаты внеатмосферных наблюдений спектра Солнца, показывают, что до длин волн около 2000 Å характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, а тёмные фраунгоферовы линии сменяются яркими эмиссионными.
Важнейшей особенностью солнечного спектра от длины волны около 1600 Å до ИК диапазона является наличие фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям излучения различных элементов в спектре разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них наблюдается излучение, исходящее от более наружных, а, следовательно, и более холодных слоев. Характер (форма, интенсивность, ширина) линий поглощения позволяет судить о температуре на разных глубинах в атмосфере Солнца, а также об относительном числе поглощающих атомов различных химических элементов в атмосфере Солнца.
Самая сильная линия поглощения солнечного спектра находится в далекой УФ области — резонансная линия водорода Ly-α с длиной волны 1216 Å. Однако на эту длину волны приходится также самая мощная линия излучения солнечного спектра — та же линия Ly-α, но возникшая в более высоких слоях атмосферы.
В видимой области наиболее интенсивны резонансные линии ионизованного кальция. После них по интенсивности идут первые линии бальмеровской серии водорода, затем резонансные линии натрия, линии магния, железа, титана и других элементов. Остальные многочисленные линии отождествляются со спектрами более 80 известных химических элементов из таблицы Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путём установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов вместе взятых, и на его долю приходится около 70% всей массы Солнца. Следующим по распространённости элементом является гелий — около 28% массы Солнца. На остальные элементы, вместе взятые, приходится не более 2%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10000 раз меньше, чем атомов водорода.
Your browser does not support the video tag. Наблюдения за Солнцем в различных спектральных диапазонах в течение трёх лет 5.2.3. Внутреннее строение СолнцаСтроение Солнца: 1 – ядро, 2 – зона лучистого равновесия, 3 – конвективная зона, 4 – фотосфера, 5 – хромосфера, 6 – корона, 7 – пятна, 8 – грануляция, 9 – протуберанец Ядро. Центральная часть Солнца с радиусом около 150000 км (0,2 – 0,25 радиуса Солнца), в которой происходят термоядерные реакции, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150000 кг/м³ (в 150 раз выше плотности воды и в 6,6 раз выше плотности самого тяжёлого металла на Земле — иридия), а температура в центре ядра — более 14 млн. К. Поскольку наибольшие температуры и плотности должны быть в центральных частях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходят вблизи самого центра Солнца. В ядре наряду с протон-протонной реакцией заметную роль играет углеродный цикл. В результате только протон-протонной реакции каждую секунду в энергию превращаются 4,26 млн. тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2 × 10 27 тонн. Кроме энергии, уносимой в процессе термоядерных реакций γ-квантами, а также непосредственно в виде кинетической энергии возникающих частиц, важную роль играет образование нейтрино, поток которых пронизывает Землю. Зона лучистого равновесия. По мере удаления от центра Солнца температура и плотность становятся меньше, выделение энергии за счёт углеродного цикла быстро прекращается, и вплоть до расстояния 0,2–0,3 радиуса температура становиться меньше 5 млн. К, также существенно падает плотность. В результате ядерные реакции здесь практически не происходят. Эти слои только передают наружу излучение, возникшее на большей глубине. Существенно, что вместо каждого поглощенного кванта большой энергии частицы, как правило, излучают несколько квантов меньших энергий в результате последовательных каскадных переходов. Поэтому вместо γ-квантов возникают рентгеновские, вместо рентгеновских — УФ, которые, в свою очередь, уже в наружных слоях «дробятся» на кванты видимого и теплового излучения, окончательно испускаемого Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии только путём поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 радиуса Солнца. Конвективная зона. Выше уровня лучистого равновесия в переносе энергии начинает принимать участие само вещество. Непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. В конвективной зоне возникает вихревое перемешивание плазмы. По современным данным, роль конвективной зоны в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.
|