Для чего нужен солнечный трекер и как его собрать самому
Известно, что оптимальный КПД солнечные панели имеют в том случае, если они перпендикулярно расположены по отношению к лучам Солнца, падающим на них. Когда в конструкции присутствует солнечный трекер, его поворотный механизм позволяет батареям поворачиваться вслед за светилом, не теряя при этом уровня работоспособности.
Солнечный трекер обеспечивает регулярное слежение за Солнцем, позволяющее панелям «ловить» его лучи и вбирать в себя максимальное количество света.
Преимущества устройства и принцип его работы
Безусловно, главное преимущество — повышение КПД гелиосистемы почти на 50% (в среднем, от 40 до 45%). Оптимальный угол падения солнечных лучей — 90°. Именно трекер и обеспечивает такой угол наклона, поворачивая батареи в нужном направлении. Установка такого устройства позволит не беспокоиться о необходимости монтажа дополнительных панелей. Это может быть сопряжено с нехваткой места и иными техническими сложностями.
Благодаря электронной системе, в которую входит специальный приемник с функцией GPS навигации, трекер точно может определить, где находится Солнце. Спутник системы GPS дает сигнал, который система «ловит», и, исходя из этого, контролирует движение батарей в ту или иную сторону. Главный действующий элемент в данном случае — так называемый серводвигатель. Он изменяет то направление, в котором движется вал. Что же касается принципа перемещения, он может быть разным. Исходя из него, конструкции трекеров разделяются на несколько видов.
Виды солнечных трекеров
На основании действия осей вращения, устройства бывают:
- с осью, вращающейся в горизонтальном направлении относительно земной поверхности;
- ось вращается вертикально относительно земной поверхности;
- происходит вращение оси «по наклонной» (средний вариант между первыми двумя);
- с осью, ориентированной на Полярную звезду ;
- двуосные трекеры, с большей амплитудой движения и широкими возможностями (обладают самой высокой степенью свободы).
Вопрос стоимости и целесообразность приобретения.
Такое устройство будет стоить очень дорого. Средняя стоимость любого подобного устройства начинается от 200 000 рублей и выше. Более того, его электромеханика довольно сложная и хрупкая. Под влиянием внешней среды с дорогостоящим прибором может случиться любой непредвиденный казус.
Поэтому любители электроники уже давно наловчились изготавливать солнечные трекеры самостоятельно. Это может показаться удивительным, но самодельные устройства чаще всего работают гораздо эффективнее и надежнее, а материальные вложения мастеру нужно будет сделать минимальные.
Безусловно, собранное своими руками устройство не будет таким «презентабельным» внешне, как покупное. Но простая двуосная конструкция, изготовленная самостоятельно, полностью окупит время и усилия. Важно и то, что если она по тем или иным причинам выйдет из строя, домашний мастер будет вполне в состоянии починить.
Основные элементы конструкции и их назначение
Для начала следует определиться, какие основные элементы гелиосистемы нам понадобятся:
- две солнечные панели;
- два сервопривода (или движка);
- контроллер заряда.
Прежде всего, понадобятся две простые солнечные панели мощностью от 3 до 5 Вт каждая. На выходе у нее имеется напряжение 6 вольт, что при последовательном соединении двух батарей дает 12 вольт с небольшим. На обратной стороне панели имеется USB-гнездо, а также «пятачки», благодаря которым можно делать пайку.
Из трех сегментов батареи, соответственно, имеется три выхода. Каждый сегмент (выход) генерирует по 2 вольта. Иными словами, при подключении, в зависимости от надобности, можно получить на выходе 2,4 либо 6 вольт.
Следующий необходимый узел — это сервопривод, точнее, два. Один будет поворачивать солнечную батарею по горизонтальной оси, а другой — по вертикальной. Благодаря таким простым движкам можно получить настоящий электропривод гелиоустановки.
Эти движки — непростые, так просто они вращаться не станут. Их необходимо немного доработать. В наборе с каждым приводом идут пластиковые диски, крестовины и винты для их крепления. Для крепления двигателей можно приобрести металлические кронштейны — чтобы закрепить их между собой в единую конструкцию. В наборе с кронштейнами также идут несколько необходимых элементов — в частности, крепежные винты, подшипник и диски.
И последний элемент — контроллер заряда, который будет принимать энергию от солнечных батарей и передавать ее в аккумулятор.
Начинаем работу с электронной начинки. Схема проста и легка для повторения. В ней можно поменять все, что угодно, на свое усмотрение, перебрав в Интернете несколько вариантов и предварительно собрав их воедино. Можно, например, поменять номиналы переменных и постоянных резисторов, спроектировать схему печатной платы на свое усмотрение — и получится работающий и долговечный электропривод гелиоустановки.
Изготовление схемы методом ЛУТ
Для начала схему платы нужно распечатать на специальной бумаге для ЛУТа ( лазерно-утюжная технология). Бумага с наружной стороны глянцевая, с внутренней — обычная, матовая. Печатать придется на лазерном принтере, на глянцевой стороне. После контакта с утюгом плате нужно дать остыть, а потом отсоединить ее от матовой основы. Делается это легко, смывать ничего не потребуется.
Далее плата аккуратно переносится с бумаги на текстолит, который предварительно обезжиривается. Лучше всего сделать это мелкой наждачкой. Отрываем маленький кусочек и просто зашкуриваем. Далее прикладываем рисунок к плате и утюжим пару минут. Аккуратно снимаем приклеившуюся к текстолиту глянцевую основу. Если все было сделано аккуратно, схема благополучно будет перенесена на текстолит.
Обычно все переносится аккуратно, вплоть до мелкого текста. После этого главное — чтобы вытравились мелкие детали. При наличии на схеме небольших помарок они исправляются обычным маркером.
Далее плату необходимо вытравить. В качестве раствора для травления применяется персульфат аммония, его можно приобрести в радиотоварах. Один и тот же раствор можно использовать несколько раз. Перед использованием жидкость подогреть до 40-50°С, это значительно ускорит процесс травления. Травить следует минут 20, в специально подобранной пластиковой емкости. По истечении 20 минут нужно снять тонер — с помощью той же мелкой наждачной бумаги либо ацетона.
После этого в схеме аккуратно просверливаются все обозначенные отверстия, и можно приступать к постепенному спаиванию всей конструкции.
«Начинка» электросхемы и сборка
Для сборки понадобятся:
- «сердце» устройства — электронный усилитель LM 324 N;
- панель под усилитель;
- два транзистора типа 40 2С;
- два транзистора типа 40 1С;
- один керамический конденсатор номер 104;
- диоды (можно использовать любые, главное — чтобы они были не менее 3 ампер каждый; их понадобится 4 штуки);
- один резистор на 15 кОм;
- один резистор на 47 кОм;
- два фоторезистора;
- два подстроечных резистора — один на 100 кОм и другой на 10 кОм (резистор на 10 кОм отвечает за чувствительность фотодатчика).
После этого проводится спаивание схемы. При спаивании очень пригодится стандартный набор, состоящий из пластиковых гнезд и штекеров. Он прекрасно подходит для того, чтобы максимально качественно изготавливать любые самодельные схемы. На схеме, как правило, остается несколько перемычек. При всем старании сделать полностью печатную плату, без них все равно обойтись не получится.
В процессе отладки схемы обязательно понадобится такой элемент как концевой выключатель. Обычно их нужно два — чтобы своевременно прекращать вращение концевых двигателей, в том случае, если они начнут бесконтрольное вращение в процессе испытания. После того как устройство будет благополучно испытано, концевые двигатели собираются окончательно.
После отладки схемы следует приступить к вскрытию двигателя. Для этого нужно последовательно открутить четыре винта. Открываем верхнюю крышку двигателя. Внутри находится блок, состоящий из нескольких шестеренок. Все они металлические, вероятнее всего — из латуни. На главной шестерне имеется шпенечек, ограничивающий вращение двигателя. Лучше его сразу выдернуть небольшими плоскогубцами, так как физический ограничитель здесь не потребуется. Вместо ограничителей мы будем использовать те самые концевые выключатели, которые будут эффективно контролировать электропривод гелиоустановки во время его движения.
Плата управления находится с обратной стороны сервопривода. Под ней мы обнаруживаем всю «начинку». Провода, которые идут на плату управления, нужно будет отпаять и припаять напрямую на движок сервопривода. Таким образом, он превратится в небольшой двигатель постоянного тока. Он будет вращаться в обе стороны, в зависимости от полярности.
Напряжение и питание платы составляет 9-15 вольт. При желании можно выставить и меньше — например, 6,5 вольт.
При испытании схемы может оказаться так, что новоиспеченный электропривод гелиоустановки сразу начинает греться — по причине чрезмерного потребления тока. Ошибка часто заключается в том, что провода припаивают, прикасаясь к плате. При перепайке провода не должны касаться платы. Также их нельзя оставлять слишком близко к ней.
Предварительное испытание трекера
Готовое самодельное устройство слежения за Солнцем нужно предварительно испытать. Перед подключением оба резистора выкручиваются «в ноль» (против часовой стрелки), на них подается питание в 6,5 вольт, и двигатель, изготовленный из сервопривода, начинает быстро вращаться. При испытании можно сразу надеть на него насадку в виде двухлопастного пропеллера, идущую в комплектации, чтобы отслеживать вращение. При этом фоторезисторы должны иметь одинаковое освещение своих поверхностей.
Вращением 100-килоомного резистора по часовой стрелке (аккуратно, с помощью небольшой отвертки) добиваемся остановки двигателя. Находим то положение, в котором он либо почти останавливается, либо останавливается совсем. Теперь с помощью 10-килоомного резистора следует уменьшить чувствительность механизма, добавив ему немного сопротивления.
В процессе испытания следует время от времени слегка прикрывать пальцем поверхность то одного, то другого фоторезистора. Если на один резистор попадает меньше света, двигатель вращается в одну сторону, если на другой — двигатель вращается в другую сторону. В процессе испытания можно использовать лампу, которая послужит своего рода заменителем Солнца. По мере отворачивания конструкции от лампы двигатель, благодаря фоторезисторам, очень чутко реагирует на недостаток света и поворачивается в ту сторону, где его больше.
Далее проверяется работа концевых выключателей. Таким образом, готово устройство, которое будет вращать солнечную панель по оси Х. Чтобы она вращалась и по оси У, следует изготовить конструкцию, следуя абсолютно такой же схеме. В целом, понадобится два трекера для полноценного функционирования устройства.
Прикрепление трекеров к солнечным панелям
Сборка начинается с кронштейнов: двигатели собираются воедино. Для сопряжения двух частей кронштейна вставляем болтик и собираем «держатель» для двигателя, как и любой другой.
Далее принимаемся непосредственно за батарею. Вскрываем «коробочку» с электронной начинкой внутри и видим простой вариант: «один диод и десять граммов термоклея». Далее берутся два провода: со знаком «плюс» на первой панели, со знаком «минус» — на второй. П олярность, при желании, меняется так, как удобно.
Более надежно панели можно скрепить металлическим каркасом. Все крепится друг к другу с помощью термоклея и герметика. Главное, чтобы конструкция не имела прорех, а между двумя панелями посередине осталось расстояние в несколько сантиметров. Через него будут «выглядывать» фоторезисторы, следящие за Солнцем.
Далее на каркас (там же, посередине, над щелью) прикрепляется металлическая пластина из фольгированного текстолита. Фольгированный текстолит удобен своей практичностью. В отличие от пластика, он не плавится при нагревании на Солнце. Также в нем есть возможность легко проделать «дорожки» для фоторезисторов. На пластинку из текстолита наносятся контуры «дорожек» для светодиодов, по тому же принципу, что и основная схема — с применением специальной бумаги, проглаживанием утюгом и травлением.
Итак, концевой выключатель на движках обеспечивает ограничение их движения на 180 ° как по оси Х, так и по оси У. А высокочувствительные светодиоды «следят» за направлением солнечного света. Далее самодельная система отслеживания помещается в небольшой короб из дерева, предохраняющий провода от воздействия погодных условий и прочих неблагоприятных факторов.
Трекер для солнечных панелей — дорогостоящее и хрупкое устройство. Однако при его изготовлении своими руками оказывается, что есть прекрасная возможность обойтись без серьезных финансовых затрат. Движки, усовершенствованные собственноручно (с помощью концевых выключателей), — вариант более экономичный и надежный, который позволит панелям исправно поворачиваться в сторону Солнца в любую погоду и в любое время года.
Источник
Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.
Солнечная автономия в глубинке. 5 часть
Существуют некоторые хитрости, позволяющие, немного модифицировав основную систему, получить больше энергии от солнца. Первая из них – следить за солнцем, а вторая – за точкой максимальной мощности солнечных батарей.
Слежение за солнцем осуществляется с помощью солнечного трекера, с которого я и начну эту статью. Следующее видео демонстирует принцип действия трекера для солнечных панелей.
После монтажа солнечного трекера выработка энергии увеличится в 1,6 раза благодаря более длительному воздействию солнца на панели, а также оптимизации угла установки солнечных панелей по отношению к солнцу. Стоимость готового солнечного трекера составит около 52 000 рублей. Поскольку он сможет удержать всего пару панелей с общей мощностью до 600Вт, окупится такая система нескоро. Но сделать такое устройство можно и самостоятельно, причем самодельные трекеры довольно популярны.
При слежении за солнцем есть следующие главные задачи:
1. Создание крепкой платформы, способной выдержать и вес самих панелей, и порывы ветра.
2. Создание механики поворота тяжелой платформы с высокой парусностью.
3. Разработка логики управления механикой для слежения за солнцем.
Итак, пункт первый. Массивы батарей лучше разместить кратно необходимому напряжению, при этом они не должны затенять друг друга.
Для трекера потребуются крепкое железо и мощный фундамент. Для управления поворотной платформой оптимально подойдут актуаторы. На следующем снимке можно рассмотреть механику управления.
Такой трекер позволит контролировать положение солнечных панелей сразу в двух плоскостях. Но при желании можно настроить управление только по горизонтали, а по вертикали изменять угол пару два раза в год (осенью и весной).
Создавая логику всей системы можно выбрать один из нескольких вариантов:
1. Следить за максимально яркой точкой.
2. Установить наклон и поворот по таймеру (для каждого дня всегда известны время восхода и захода солнца).
3. Комбинированный вариант, предусматривающий постоянство угла поворота и поиск максимальной яркости.
Для первого способа есть два решения: соорудить трекер самостоятельно или купить готовый китайский, стоимостью около 100 долларов.
Но поскольку сделать такое устройство довольно несложно любому, кто разбирается в принципах работы контроллеров, многие предпочитают сделать все самостоятельно, при этом самодельный трекер обойдется в 10 раз дешевле.
Подробности изготовления солнечного трекера можно узнать на профильном форуме, где оптимальные конструкции уже вычислены и подобрано наилучшее оборудование. Слежение за МРРТ (точка максимальной мощности солнечных батарей) Для этой цели существует два типа солнечных контроллеров. Контроллер МРРТ (Maximum Power Point Tracking) следит за солнцем с другой позиции системы. Для обьяснения привожу следующий график.
Как видно из графика, максимум снимаемой мощности будет получен в точке максимальной мощности, которая непременно окажется на зеленой линии. Это невозможно для обычного ШИМ контроллера. Используя МРРТ контроллер можно также подключить последовательно соединенные солнечные панели. Такой способ позволит ощутимо снизить потери энергии в процессе транспортировки от солнечных батарей до аккумуляторов. Экономически целесообразно устанавливать МРРТ контроллеры при мощности СП, превышающей 300-400 Вт. Вполне обоснованной будет покупка солнечного контроллера «с запасом», если только вы не создаете мощную энергосистему, которая перекроет потребности дома с избытком. Последовательно наращивая число солнечных батарей, я получил мощность 800 Вт, чего вполне достаточно для загородного дачного домика летом.
В моем примере от энергосистемы в среднем ожидается по 4 кВт*ч электрической энергии в день с апреля по август. Такого количества энергии вполне достаточно для комфорта семьи из 4 человек при условии отказа от пользования электроплитой и микроволновой печью. Мощным потребителем энергии является бойлер для подогрева воды. Для 80 литрового бойлера в частном доме потребуется как раз приблизительно 4,5кВт*ч энергии. Таким образом, создаваемая автономная система окупится хотя бы при нагреве воды.
Предыдущая статья была посвящена гибридному инвертору, позволяющему забирать энергию преимущественно от солнечных батарей, получая от сети только недостающее количество. Компания МикроАрт уже наладила выпуск МРРТ-контроллеров, которые могут быть связаны с инверторами этой же фирмы по общей шине. Поскольку гибридный инвертор МикроАрт я уже установил, этот вариант для меня особенно удобен.
Главным достоинством этого контроллера для меня стала возможность подкачки нужного количества электричества, чтобы не заимствовать энергию от аккумулятора, снижая его ресурс. Самым популярным и при этом оптимальным по соотношению напряжение/ток является Контроллер ECO Энергия MPPT Pro 200/100. Он способен поддерживать входное напряжение до 200 В и выходной ток до 100 А. Мои аккумуляторы собраны на 24 В (напряжение аккумуляторов 12/24/48/96 В), так что максимальная мощность от контроллера составит 2400 Вт, таким образом я получаю двукратный запас при наращивании солнечных батарей. Максимальная мощность контроллера – 11 кВт при 110 В на аккумуляторах (буферное напряжение).
Связь контроллера с гибридным инвертором МАП SIN Энергия Pro HYBRID v.1 24В поддерживается по шине 12С. При этом возможно мгновенное добавление мощности в случае, когда инвертор выдает информацию о повышенном потреблении энергии. Поскольку оба устройства от одного производителя – понадобилось лишь включить шнурки в нужные разьемы устройств и активировать нужные параметры.
Продолжая исследовать возможности контроллера, я обнаружил три реле, которые можно запрограммировать. Например, при солнечной погоде, если дом не потребляет электроэнергию, можно подогреть дополнительный бойлер или бассейн. Другой вариант — погода пасмурная и напряжение аккумуляторов снижено до критического уровня, инвертор может вообще отключиться, а энергия потребляется. В таком случае возможен запуск отдельного бензо/дизель генератора, для чего достаточно просто замкнуть реле. При этом в генераторе должен быть сухой контакт запуска или же отдельная система автоматического пуска – САП (другое название – АВР, Автоматический Ввод Резерва). Генератор у меня простой китайский, но стартер имеется. Поинтересовавшись автоматизацией его запуска, и выяснив, что МикроАрт уже давно выпускает собственную автоматику, я был очень этим обрадован.
Вернемся к монтажу контроллера. Здесь все стандартно: сначала нужно подключить клеммы аккумулятора, потом клеммы солнечных батарей, после чего настраиваются параметры. При подключении внешнего датчика тока можно обнаружить мощность, потребляемую инвертором в режиме реального времени.
На следующем фото можно увидеть, как работает инвертор в гибридном режиме (получая часть энергии – от сети, основную же часть – от солнечных батарей).
Чтобы продемонстрировать работу солнечного контроллера с любым другим инвертором от стороннего производителя, контроллер специально подключается с помощью внешнего датчика тока.
Реальные характеристики контроллера полностью соответствуют заявленным. Он действительно подкачивает энергию, даже при подключении к «чужому» инвертору через датчик тока. Гибридный инвертор, как и планировалось, качает в сеть энергию солнца (на фотографии видно, что100 Вт, а это половина из 200 Вт потребляемых, поступает от солнечных батарей. То есть, минимальные 100 Вт будут забираться контроллером из сети, а недостающие – поступать от солнца. Такова особенность устройства). Таким образом, комплект начал окупать себя уже с момента подключения. А начиная с мая можно рассчитывать и на полное покрытие энергетических нужд солнечными батареями.
Последующая статья станет заключительной, в ней будут сравнены три солнечные контроллера, которые у меня уже имеются.
Источник