Меню

Цвета космоса почему такие

Раскрашивая Космос

Как цвет позволяет увидеть невидимое

Вселенная невероятно красива. За последние 25 лет, благодаря таким телескопам, как «Хаббл», мы смогли увидеть космос красочным и волшебным. Словно кто-то махнул радужной кистью по черному холсту бездны. Однако, то что мы видим на цветных фотографиях вселенной — это фальшивка, созданная для нашего удобства, комфорта и привлечения внимания.

Но не спешите с выводами, распутывать этот заговор необходимо с самого начала — с основ того, что такое цвет, как создаются фотографии космоса и почему NASA раскрашивает их.

RED GREEN BLUE

Взгляните на картинку выше. Это весь свет во вселенной, который мы с вами можем видеть. Это мизерная доля спектра электромагнитного излучения и большинство частот невидимы нашему глазу. Тот свет, что доступен восприятию человека начинается с красного в самой длинной части волны и заканчивается фиолетовым на самой короткой частью волны. Все это — видимый спектр.

Человек воспринимает свет в видимом спектре благодаря клеткам в наших глазах — конусам, которые интерпретируют отражаемый от объектов свет. В глазах человека расположено три типа конусов, восприимчивых к длинным, средним и коротким электромагнитным волнам. Если переводить их в цвет, то приблизительно эти частоты можно отнести к красному, зеленому и синему в видимом спектре.

Красный, зеленый и синий — главные цвета. Все остальные цвета — результат комбинации этого трио. Данная комбинация стала ключевым принципом в деле раскрашивания черно-белых фотографий.

ДОБАВЛЯЯ КРАСКИ

Портрет выше был сделан в 1911 году. Это один из первых примеров цветной фотографии, хотя в действительности он создан на основе трех черно-белых кадров, наложенных друг на друга. Русский химик и фотограф Сергей Прокудин-Горский сделал три идентичных снимка Алим-хана используя три фильтра для отдельных цветов света. Один позволял красному свету проходить в камеру, второй — зеленому и третий — синему. Увидеть эффективность такого простого метода можно просто взглянув на кадры снятые с красным и синим фильтром.

Обратите внимание, насколько яркой выглядит синяя одежда хана на фото справа. Это означает, что больше света синего цвета проходило через фильтр. Раскрашивание и комбинирование трех негативов позволяет нам увидеть следующее:

ШИРОКИЙ СПЕКТР

Пришло время вернуться в космос. Космический телескоп «Хаббл» находится на орбите Земли с 90-го года прошлого века, позволяя нам заглядывать в далекие уголки вселенной и представляя подобные изображения:

Трюк в том, что каждый цветной кадр начинает свою жизнь черно-белым. Связано это с тем, что главная функция телескопа в измерении яркости света, отражаемого объектами в космосе. Четче всего такие кадры получаются в черно-белом виде. Цвета добавляются позже, подобно портрету Алим-хана, за тем исключением, что ученые используют специфические программы, подобные Photoshop.

Давайте используем этот снимок Сатурна для разбора:

Фильтры разделяют свет на длинные, средние и короткие волны. Процесс называется «широкополосная фильтрация», так как нацелен на широкие диапазоны спектра. После этого каждый черно-белый кадр получает свой цвет, в зависимости от позиции в видимом спектре.

Комбинированный результат позволяет увидеть истинное изображение, если бы наши глаза были сопоставимы с Хабблом по мощности.

То же можно проделать и на примере Юпитера. Обратите внимание, как комбинирование красного и зеленого создает желтый, а появление синего фильтра вводит бирюзовый и пурпурный для представления всего спектра.

Пришло время добавить еще один уровень сложности.

УЗКОПОЛОСНЫЙ СВЕТ

Наблюдение за объектом в том виде, каким он предстает перед нашими глазами — не единственный способ применения цвета. Ученые используют цвет для определения, как различные газы взаимодействуют в космосе для формирования галактик и туманностей.

Телескоп Хаббл способен делать снимки в очень узких спектрах света, исходящего от индивидуальных химических элементов, таких как кислород и углерод. Цвет позволяет выявлять их наличие на изображениях. Данный процесс называется «узкополосная фильтрация». Самое частое применение такой фильтрации полагается на изолированный свет водорода, серы и кислорода — три строительных блока звезд.

Читайте также:  Космос ближе чем мы думаем

Самый известный пример фотографии, снятой при помощи узкополосной фильтрации Хабблом — «Столпы творения». На кадре видны невероятно огромные «колонны» газа и пыли в процессе формирования новых звездных систем.

Но это не так, как выглядит данная часть космоса, если смотреть глазами человека. Получившийся снимок скорее можно назвать раскрашенной картой.

Водород и сера в естественной среде находятся в красной части спектра. В то же время кислород ближе к зелено-синей части цветового спектра. Раскрашивая такие снимки согласно позиции в спектре мы получим: красный, красный и циан. В результате «Столпы» получатся такими:

Согласитесь, не очень удобно для визуального анализа. Чтобы получить полноцветный кадр и отделить водород от серы, ученые назначают элементам цвета согласно хроматическому порядку: красный, зеленый и голубой.

По сути это значит, что так как у кислорода самая высокая частота из трех, то ему назначают синий цвет. Несмотря на то, что водород — красный, его частота выше серы, поэтому его раскрашивают в зеленый. В результате мы получаем полноцветное изображение, изучая процесс, в котором могла зародиться и наша Солнечная система.

ПРЕДСТАВЛЕНИЕ ЦВЕТОВ

Космический телескоп Хаббл способен «видеть» свет и за пределами видимого спектра — в ближнем инфракрасном и ультрафиолетовом диапазоне.

Рассматривая те же Столпы творения, в инфракрасном спектре кадр будет выглядеть совсем иначе. Длинные волны преодолевают облака газа и пыли, блокирующие свет в видимом спектре, представляя группы звезд как внутри «Столпов», так и за их пределами.

Кадры, отражающие невидимый свет, раскрашиваются похожим образом. Снимки в различных диапазонах получают световое кодирование на основе хроматического порядка — низкие частоты становятся красным, высокие — синим.

Подобные манипуляции восприятием могут вызвать вопрос — а реален ли цвет? Ответ прост: и да, и нет.

Цвет отражает реальные данные и используется для визуализации химического состава объекта или области космоса, помогая ученым выяснять, как газы за тысячи световых лет от нас взаимодействуют друг с другом. Это критическая информация, благодаря которой мы можем строить модели формирования галактик и звезд. Даже если с технической стороны для нас космос не выглядит таким образом, результаты наблюдений и съемки не выдуманы.

Цвет помогает нам видеть не только красивые картинки, но и отражает невидимые нашему глазу части вселенной.

Источник

Какого цвета Вселенная на самом деле?

Является ли на самом деле Вселенная такой же красочной, как на фотографиях?

Наверное, все видели потрясающие красочные фотографии далеких галактик и туманностей представленных астрономами. Но является ли на самом деле космос столь же красочным, как на фотографиях?

Как выглядит вселенная? На первый взгляд, это простой вопрос. Все знают как выглядит небо, полное звезд, Млечный Путь, красочные туманности или галактики. Изображения и фотографии — это одно. Но как же выглядят эти тела на самом деле?

Если мы находились в воображаемом космическом корабле и полетели бы, чтобы посмотреть на них, увидим ли мы Вселенную такой, как нам ее изображают на цветных фотографиях?

Цвет звезд

Цвет звезд определяется температурой поверхности звезды.

Основной особенностью звезд является их способность излучать свет. Это свойство, которое является общим для всех объектов, с температурой выше нуля Кельвина. Различие — в количестве излучаемого «света» (т. е. электромагнитного излучения) и по длине волны, которые по-разному излучают горячие объекты.

Например, холодные звезды, имеющие температуру поверхности около 3000 Кельвинов имеют максимальное излучение в инфракрасной области (тепловое излучение). Это излучение, которое мы не можем воспринимать нашими глазами, но мы можем его зарегистрировать специальными приборами. Такие звезды имеют определенное количество излучения также в видимой части электромагнитного спектра. Но гораздо меньше, чем в инфракрасном диапазоне. Наибольшее количество его видимого излучения находится в красном спектре, в синем — минимальное.

Читайте также:  Как нарисовать космос простыми карандашами легко

При попадании на сетчатку глаза, все компоненты видимого света соединяются. Получившееся изображение будет зависеть от того, волны какой части видимого спектра преобладают. Таким образом цвет более холодных звёзд получается красноватым.

Аналогичная ситуация наблюдается и с голубыми звездами. Единственное различие заключается в том, что максимум, который излучают эти звезды, находится на противоположной стороне видимого спектра в ультрафиолетовой области. Он примыкает к синей части спектра. Большая часть видимого света, который мы регистрируем в свете этих звезд, является синим, в гораздо меньшем количестве присутствуют волны красного цвета. В совокупности все волны, попавшие от света таких звезд на сетчатку глаза, создадут синеватый свет.

Цвет туманностей

Ирония судьбы заключается в том, что именно эти объекты, которые известны нам по фотографиям, как яркие, переливающиеся всеми цветами, абстрактные картины, на самом деле выглядят совсем иначе. Если мы будем летать на нашем воображаемом космическом корабле вокруг них — мы, вероятно, даже не увидели бы их.

Виной тому является физика

Эти потрясающие по своей красоте на фотографиях объекты состоят из огромного количества газа и пыли, но это вещество сильно разрежено в пространстве космоса. В подобных скоплениях плотность вещества еще меньше, чем в вакууме, искусственно создаваемом учеными для проведения научных экспериментов на Земле. Мы можем наблюдать их на фотографиях в цвете и форме, только благодаря тому, что они находятся от нас на огромном расстоянии.

Более того , их цвета на фотографиях не соответствуют действительности. Типичная фотография туманности получается благодаря тому, что ученые фотографируют один и тот же объект с использованием разных фильтров, а затем изображения полученные с использованием этих фильтров складываются вместе. С использованием оптических камер туманность может быть снята в красной полосе, затем в синей и зеленой. Также астрономы с помощью различного оборудования могут применять другие фильтры, так они могут узнать, насколько ярким является объект в радио, микроволновом, инфракрасном или ультрафиолетовом спектре. Затем все изображения обрабатываются и объединяются так, что в результате получается красочная фотография.

Популярной, например, является палитра, используемая Космическим телескопом Хаббла. Темно-красный цвет — это ионизированная сера, красный — ионизированный водород и бирюза — ионизированный кислород. Благодаря такой палитре ученые могут отличить состав отдельных участков этих объектов.

К истинным цветам туманности такие фотографии не имеют никакого отношения, как бы они ни были разнообразны и красивы.

Если Вам понравилась статья, то поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник

Какого цвета Вселенная?

Вселенная купается в море света: от сине-белых мерцаний молодых звёзд, до глубокого красного свечения водородных облаков. Помимо цветов, видимых человеческими глазами, есть вспышки рентгеновских и гамма-лучей, мощные радиовспышки и слабое, постоянно присутствующее свечение космического микроволнового фона. Космос наполнен цветами, видимыми и невидимыми, древними и новыми. Но из всего этого был один цвет, который появился перед всеми остальными, – первый цвет Вселенной.

Вселенная появилась 13,8 миллиардов лет назад, после Большого Взрыва. В самый ранний момент она была более плотной и горячей, чем когда-либо ещё. Большой Взрыв часто визуализируется как яркая вспышка света, появляющаяся из моря тьмы, но это не точная картина. Большой Взрыв не произошёл в пустом пространстве. Большой Взрыв был расширяющимся пространством, наполненным энергией.

Сначала температура была настолько высокой, что света не было. Космос должен был остыть в течение доли секунды, прежде чем смогли бы появиться фотоны. Примерно через 10 секунд Вселенная вступила в фотонную эпоху. Протоны и нейтроны остыли в ядрах водорода и гелия, и пространство было заполнено плазмой ядер, электронов и фотонов. В то время температура Вселенной составляла около 1 миллиарда градусов Кельвина.

Читайте также:  Задания для квеста по космосу

Но хотя свет был, цвета ещё не было. Цвет – это то, что мы можем видеть, или, по крайней мере, какие-то приборы могли бы видеть. В эпоху фотонов температура была настолько высокой, что свет не мог проникнуть в плотную плазму. Цвет не появится, пока ядра и электроны не охладятся достаточно, чтобы соединиться в атомы. Вселенной понадобилось 380 000 лет, чтобы так сильно остыть.

Иллюстрация, показывающая эволюцию Вселенной, начиная от Большого Взрыва слева, и до появления космического микроволнового фона. После образования первых звёзд заканчиваются космические тёмные века, за которыми следует образование галактик. Авторы и права: CfA / M. Weiss.

К тому времени наблюдаемая Вселенная стала прозрачным космическим облаком водорода и гелия, диаметром 84 миллиона световых лет. Все фотоны, образовавшиеся в Большом Взрыве, наконец-то смогли свободно перемещаться в пространстве и времени.

Это то, что мы сейчас видим, как космический микроволновый фон – свечение, оставшееся от времени, когда Вселенную, наконец, можно было увидеть. За миллиарды лет свечение остыло до такой степени, что оно теперь имеет температуру менее 3 градусов выше абсолютного нуля. Когда оно впервые появилось, Вселенная была намного теплее, около 3000 К. Ранняя Вселенная была наполнена ярким тёплым свечением.

У нас есть хорошее представление о том, что это был за цвет. Ранняя Вселенная имела почти равномерную температуру, а её свет имел распределение длин волн, характерное для чёрного тела. Многие объекты получают свой цвет, в зависимости от типа материала, из которого они сделаны. Но цвет чёрного тела зависит только от его температуры. Чёрное тело, при температуре около 3000 К, будет иметь ярко-оранжево-белое свечение, похожее на тёплый свет старой 60-ваттной лампочки.

На этом изображении, полученном с помощью Очень Большого Телескопа (ESO) показана эмиссионная туманность RCW 36. Авторы и права: ESO.

Люди не очень точно видят цвет. Цвет, который мы воспринимаем, зависит не только от фактического цвета света, но и от его яркости, а также от того, приспособлены ли наши глаза к темноте. Если бы мы могли вернуться к периоду этого первого света, мы бы, вероятно, увидели бы оранжевое свечение, похожее на огонь в камине.

В течение следующих нескольких сотен миллионов лет слабое оранжевое свечение исчезнет и покраснеет, поскольку Вселенная продолжит расширяться и охлаждаться. В конце концов, Вселенная станет чёрной.

Примерно через 400 миллионов лет после Большого Взрыва, начали формироваться первые блестящие сине-белые звёзды, и появился новый свет. По мере появления и развития звёзд и галактик, космос начал приобретать новый цвет.

В 2002 году Карл Глазебрук и Иван Балдри вычислили средний цвет от всего света, который мы видим сегодня от звёзд и галактик, чтобы определить текущий цвет Вселенной. Получился бледно-коричневый загар, похожий на цвет кофе со сливками. Они назвали цвет “космический латте”.

Шаровое звёздное скопление NGC 362. Авторы и права: Hubble.

Даже этот цвет будет виден только некоторое время. Поскольку большие голубые звёзды стареют и умирают, останется только глубокое красное свечение карликовых звёзд. Наконец, через триллионы лет даже их свет погаснет, и Вселенная станет чёрным морем. Все цвета со временем исчезнут, и время унесёт нас всех во тьму.

Но пока, цвета Вселенной всё ещё радуют нас. И если вы когда-нибудь будете сидеть у костра с кофе со сливками, когда смотрите на темноту ночи, знайте, что вы купаетесь в космических цветах. Прошлом, настоящем и будущем.

Источник

Adblock
detector