Меню

Центр наблюдения за солнцем

Центр наблюдения за солнцем

Состав лаборатории — около 30 человек.

Дневник

10.06.2021
Частичное солнечное затмение можно будет наблюдать сегодня на территории России
Частичное солнечное затмение, то есть ситуацию, когда Луна проходит по краю Солнца и скрывает лишь его часть, можно будет наблюдать сегодня на значительной части территории нашей страны. Это первое из двух затмений этого года. Следующее, оно же последнее, затмение в этом году произойдёт 4 декабря. К сожалению, наблюдать как полную, так и частичную фазу затмения в декабре сможет лишь население самых южных областей Земного шара. Наилучшие условия наблюдения будут в Антарктиде.
Частичное солнечное затмение можно будет наблюдать сегодня на территории России

02.06.2021
Распространяющиеся сообщения о крупном облаке плазмы, движущемся к Земле, являются недостоверными
Целая серия сообщений о необычно крупном облаке плазмы, движущемся к Земле, была распространена вчера, 1 июня 2021 года, целым рядом средств массовой информации, включая крупные государственные СМИ. Вот лишь некоторые заголовки и фрагменты сообщений: «Землю накроет выброшенное с Солнца облако плазмы», «Ученые отметили, что данный выброс станет самым ярким и быстрым из зафиксированных в новом 25-м солнечном цикле», «Выброшенное Солнцем гигантское облако плазмы накроет Землю 1 июня» и иные. Источником информации, на который ссылаются почти все СМИ, является зарубежный сайт SpaceWeather.com. Указанные сообщения достигли такого масштаба, что стоят того, чтобы их прокомментировать.
Распространяющиеся сообщения о крупном облаке плазмы, движущемся к Земле, являются недостоверными

Новости астрономии

20.02.2021
Американский марсоход высадился на Красной планете
Американский ровер Perseverance успешно высадился на Марсе. Посадка марсохода длилась около семи минут. Все операции во время нее осуществлялись в автоматическом режиме.

18.02.2021
Найдены способные выжить на Марсе организмы
Ученые Бременского университета в Германии нашли микроорганизмы, которые могут расти и развиваться в марсианской атмосфере. По словам исследователей, на основе цианобактерий, или сине-зеленых водорослей, можно создать системы жизнеобеспечения для людей, которые будут жить на поверхности Марса.

16.02.2021
Астрономы нашли сотовую структуру внутри Крабовидной туманности
Астрономы при помощи наземного телескопа CFHT построили трехмерную модель Крабовидной туманности. Оказалось, что этот остаток сверхновой обладает внутренней структурой, похожей на соты. Крабовидная туманность, находится на расстоянии 6,5 тысячи световых лет от Солнца, в созвездии Тельца. Это остаток от взрыва сверхновой в 1054 году.

Космическая погода

Магнитные бури за последние 24 часа:

Произошла магнитная буря уровня&nbspG1 (слабая)

Источник

Физический институт Российской Академии наук.

В новой российской истории в период до 2009 года Лаборатория осуществляла систематические исследования солнечной короны методами рентгеновской спектроскопии в рамках программы КОРОНАС (Комплексные ОРбитальные Околоземные Наблюдения Активности Солнца) Российской Академии Наук. В период с 1991 года в рамках этой программы были запущены три космических аппарата для исследования Солнца: КОРОНАС-И (1994), КОРОНАС-Ф (2005) и КОРОНАС-Фотон (2009).

В настоящее время лаборатория работает над рядом перспективных проектов, в том числе участвует в создании научной аппаратуры для космического аппарата Интергелиозонд, ведет работы по созданию солнечных телескопов АРКА, является изготовителем научной аппаратуры или составных частей научных приборов для космических аппаратов «Спектр-УФ», «Зонд», «Электро» и ряда других. Лаборатория открыта для сотрудничества по проектам в области космических и наземных экспериментов по созданию оптической и рентгеновской изображающей техники, а также электронно-механических узлов аппаратуры научного и иного назначения.

Cоздание изображающих рентгеновских телескопов и спектрометров для проведения космических экспериментов

Лаборатория рентгеновской астрономии Солнца ФИАН обладает уникальными, не имеющими аналогов в нашей стране, возможностями по созданию высокоточных телескопов и спектрометров для проведения космических экспериментов по исследованию Солнца на борту искусственных спутников Земли. В лаборатории производится полный цикл работ по созданию научной аппаратуры, начиная с разработки концепций и технологических макетов инструментов и заканчивая созданием летного образца, поставляемого на борт космического аппарата. Всего с 1951 по 2007 годы аппаратура, созданная в Лаборатории РАС, работала на борту более 30-и космических аппаратов — спутников и геофизических ракет.

Некоторые из этих экспериментов показаны ниже на графике.

Космические эксперименты ФИАН с 1957 по 2008 годы.

Солнечная обсерватория Коронас-Ф. Работала на орбите Земли с 31 июля 2001 по 5 декабря 2005 года.

ИСЗ2 — второй искусственный спутник Земли на борту которого с помощью созданной в ФИАН аппаратуры был проведен первый в мировой истории спутниковый эксперимент по регистрации рентгеновского излучения Солнца.
Р — эксперименты на борту высотных геофизических ракет, проводившиеся в 60-х годах XX века.
К163 и К230 — эксперименты на первых советских спутниках для исследования Солнца серии КОСМОС.
ИК — эксперименты на борту международных спутников серии ИНТЕРКОСМОС.
В — эксперименты на ракетах серии ВЕРТИКАЛЬ
Коронас-И, Коронас-Ф и Коронас-Фотон — эксперименты на спутниках программы Коронас
Гелиос — планируемый на 2014 год эксперимент по исследованию Солнца с близкой гелиоцентрической орбиты. Лаборатория РАС разрабатывает для этого эксперимента комплекс телескопов ТРЕК (TRACK).

В настоящее время космические эксперименты Лаборатории РАС ФИАН осуществляются в рамках программы КОРОНАС (Комплексные Орбитальные Наблюдения Активности Солнца) Российской Академии Наук. В период с 1991 года эта программа предусматривает запуск трех космических аппаратов для исследования Солнца, два из которых (КОРОНАС-И и КОРОНАС-Ф) в настоящее время закончили свою миссию. На борту первого из них ФИАН проводил эксперимент ТЕРЕК по наблюдению Солнца в крайней ультрафиолетовой и рентгеновской области спектра, а на борту спутника КОРОНАС-Ф был осуществлен эксперимент СПИРИТ, который в настоящее время является наиболее успешным экспериментом по исследованию Солнца в истории советской и российской науки. В ходе эксперимента, продолжавшегося более четырех лет, было получено около 300 000 высокоточных изображений Солнца в девяти спектральных каналах, характеризующих пространственную структуру и динамику плазмы атмосферы Солнца в диапазоне температур от 70 тысяч до 10 млн. градусов и в диапазоне высот от верхней хромосферы до короны на высоте более радиуса Солнца.

Читайте также:  Опухоль глаз от солнца

В настоящее время в Лаборатории РАС ФИАН заканчивается создание комплекса телескопов и изображающих спектрометров ТЕСИС, который будет установлен на борту третьего космического аппарата программы КОРОНАС, спутника КОРОНАС-ФОТОН (выше на рисунке). Запуск космического аппарата и начало эксперимента ТЕСИС запланированы на июнь 2008 года.

Экспериментальное и теоретическое исследование активных процессов на Солнце

Коллаж из изображений, полученных в ходе эксперимента СПИРИТ.

Спектры солнечных вспышек, измеренные в диапазоне 275-335 А в ходе эксперимента СПИРИТ.

Крупномасштабные области высокотемпературной плазмы в короне, открытые в ходе эксперимента СПИРИТ.

Лаборатория РАС является одним из ведущих в России центров изучения солнечной активности. За более чем полувековую историю теоретических и экспериментальных исследований в лаборатории получены уникальные данные о структуре и динамике солнечной короны, механизмах энерговыделения в атмосфере Солнца, температурном и спектральном составе солнечной плазмы. Сотрудниками лаборатории был проведен первый в мировой истории спутниковый эксперимент по наблюдению коротковолнового излучения Солнца, впервые в истории зарегистрированы частицы радиационных поясов Земли, получена первая в нашей стране фотография Солнца в рентгеновском диапазоне, впервые в мире получены спектры Солнца в области длин волн короче 10 ангстрем.

В настоящее время в лаборатории продолжается систематическое изучение солнечной короны методами современной рентгеновской спектроскопии. Основными задачами этих исследований являются самые актуальные проблемы современной физики Солнца, такие как:

  • поиск механизмов нагрева холодной фотосферы (6000 К) до температур более 1 миллиона градусов в спокойной короне и более 20 – 30 миллионов в области вспышек,
  • исследование строения и динамики магнитных полей в короне и их связи с нижними и верхними слоями атмосферы Солнца,
  • изучение физических свойств плазмы устойчивых структур (активных областей, корональных дыр, ярких точек и др.),
  • определение механизмов выделения энергии быстропротекающих процессов, таких как вспышки и выбросы корональной массы,
  • поиск механизмов образования и ускорения солнечного ветра,
  • решение проблемы обилия элементов в короне.

За последние 5 лет в Лаборатории рентгеновской астрономии Солнца были получены следующие основные научные результаты:

  • Впервые обнаружены новые структуры и явления в горячей солнечной плазме
  • Определен вклад плазмы с температурой 6-10МК в тепловой энергобюджет вспышек (до 80%)
  • Получено распределение вещества (дифференциальной меры эмиссии) в диапазоне температур выше 5МК для различных структур и динамика этого распределения во вспышечных процессах
  • Получено пространственно-временное распределение электронной плотности и градиента температур вспышечной плазмы
  • Установлена связь между крупномасштабной эрупцией и перестройкой магнитного поля солнечной короны
  • Выявлена связь между плотностью и скоростью солнечного ветра и интегральными потоками Солнца в линиях переходного слоя и корональных линиях
  • Совместно с НИИЯФ МГУ впервые зафиксирована высокая (близкая к 100%) степень поляризации рентгеновского излучения во вспышке
  • По данным наблюдений СПИРИТ и наземного солнечного телескопа исследована высотная структура корональных дыр и показана связь их структуры с высокоскоростными потоками солнечного ветра
  • Исследованы периодические процессы в горячей линии MgXII Исследованы вариации плотности верхней атмосферы Земли

Разработка и создание систем неразрушающего контроля качества промышленной продукции

Неразрушающий контроль качества турбинной лопасти.

Спектроскопические методы исследования являются мощным инструментом для неразрушающего контроля качества промышленной продукции, дающим превосходные результаты даже в тех случаях, когда дефекты изготовления являются скрытыми и не могут быть обнаружены при внешнем осмотре образца. В Лаборатории РАС имеется практический опыт создания систем контроля качества, основанных на этих принципах, способных выявлять внутренние трещины и каверны в образцах и обнаруживать вкрапления инородных материалов.

На рисунке демонстрируется результат спектроскопического исследования турбинной лопасти, при изготовлении которой был допущен промышленный брак. Слева показана обычная фотография лопасти, не обнаруживающая никаких видимых дефектов, а слева — результат исследования внутренней структуры лопасти методом изображающей спектроскопии. Хорошо видна пластина из инородного материала, нарушающая целостность конструкции.

Метод показывает хорошие результаты и при контроле качества небольших объектов, в частности контактных линз. Исследование отдельного объекта производится за время менее 1 секунды и без нарушения целостности упаковки, что позволяет реализовывать системы сплошного контроля качества продукции на стадии ее изготовления. В случае необходимости может производиться и выборочное изучение отдельных образцов.

Создание электронных систем и программного обеспечения для управления режимами работы научной аппаратуры и визуализации полученных данных

Программа считывания и анализа данных с блока датчиков ТЕСИС.

Источник

Солнечная активность (активность солнца) в реальном времени (онлайн)

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей. Проект 2012 не отвечает за изображения.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн).

Изображение солнечного ветра в реальном времени(онлайн).

Показывает солнечный ветер протяженностью около 8,5 миллионов километров от Солнца.

Изображение солнечного ветра в реальном времени(онлайн).

Пустое поле соответствует 32 диаметрам Солнца. Диаметр изображения около 45 миллионов километров на расстоянии от Солнца, или половина диаметра Меркурия. За Солнцем можно наблюдать много ярких звезд. Спутник SOHO LASCO C2

Вспышки на Солнце

Индекс геомагнитной возмущенности и магнитные бури

Сравнение основных графиков по солнцу

Прогноз солнечной активности на 27 дней

HAARP феррозонд (магнитометр)

«Компонент H» (черный след) положителен магнитный север,
«Компонент D» (красный след) положителен Восток,
«Компонент Z» (синий след) положителен вниз

Примечание: Время на картинках указано североатлантическое, то есть относительно московского времени нужно отнять 7 часов (UTC=MST-4)
Источники информации: http://www.swpc.noaa.gov/
http://www.irf.se/
http://www.tesis.lebedev.ru/

Читайте также:  Защита торпеды от солнца киа сид

Характеристики Солнца

Расстояние до Солнца: 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца: 695 990 км или 109 радиусов Земли
Масса Солнца: 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца: 5770 К
Химический состав Солнца на поверхности: 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, . ) по массе

Температура в центре Солнца: 15 600 000 К
Химический состав в центре Солнца: 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, . ) по массе

Солнце — основной источник энергии на Земле.

4,6×10 17 м
(48 световых лет)

1 500 000 C°

13 500 000 C°

Основные характеристики
Среднее расстояние от Земли 1,496×10 11 м
(8,31 световых минут)
Видимая звёздная величина (V) -26,74 м
Абсолютная звёздная величина 4,83 м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики

2,5×10 20 м
(26 000 световых лет)

Расстояние от плоскости Галактики
Галактический период обращения 2,25-2,50×10 8 лет
Скорость 2,17×10 5 м/с
(на орбите вокруг центра Галактики)
2×10 4 м/с
(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×10 9 м
(109 диаметров Земли)
Экваториальный радиус 6,955×10 8 м
Длина окружности экватора 4,379×10 9 м
Сплюснутость 9×10 -6
Площадь поверхности 6,088×10 18 м 2
(11 900 площадей Земли)
Объём 1,4122×10 27 м 2
(1 300 000 объёмов Земли)
Масса 1,9891×10 30 кг
(332 946 масс Земли)
Средняя плотность 1409 кг/м 3
Ускорение на экваторе 274,0 м/с 2
(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с
(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны
Температура ядра
Светимость 3,846×10 26 Вт

3.75×10 28 Лм

Яркость 2,009×10 7 Вт/м 2 /ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)
67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°
(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %

Проект STEREO — наблюдаем Солнце онлайн со спутника, солнечная активность сегодня

Что же это за оборудование? Его изобрели не кто иные, как американцы (NASA). Здесь они опередили великую Россию, запустив проект STEREO (Solar TErrestrial RElations Observatory), который пару лет назад обеспечил нас изображением всей поверхности Солнца в режиме онлайн. На орбиту Земли были запущены два спутника, которые носят названия Ahead и Behind (один отстал от нашей планеты, другой опередил Землю), и сейчас они обеспечивают нас стабильным изображением светила круглые сутки. С помощью этих спутников мы можем наблюдать за Солнцем онлайн, мы можем анализировать его поведение, смотреть за вспышками на звезде, изучать влияние этих вспышек на магнитное поле Земли, а также прогнозировать магнитные бури.

Далее вашему вниманию изображения со спутников проекта STEREO (NASA)

Солнце в 3D, режим реального времени (NASA — STEREO)

Если вы хотите знать, в каком именно месте сейчас находятся спутники проекта STEREO (NASA), то изучите следующее изображение. На нем синим отмечен спутник Behind, а красный — Ahead, зеленая — Земля, желтая — Солнце.

Изучение Солнца с помощью онлайн мониторов

Оказавшись во власти массы информации, которую предоставляют спутники проекта STEREO, многие кинулись высказывать свои теории по поводу полученных изображений. В сети интернет стали все чаще появляться догадки и теории об инопланетянах и их космических кораблях возле Солнца. Сейчас можно найти очень много видео, фото и других материалов по этой теме. Разобраться в ней практически невозможно, доверять электронным снимкам, которые очень легко сфальсифицировать, не стоит, поэтому данные снимки Солнца онлайн не стоит воспринимать как достоверный источник информации. С помощью проекта STEREO (NASA) вы можете наблюдать за Солнцем в режиме реального времени, получать информацию о солнечной активности сегодня. Ниже представлены снимки звезды, которые радушно предоставлены в свободный доступ сайтом http://sohowww.nascom.nasa.gov.

Другие изображения Солнца онлайн и солнечной активности

Снимки Солнца сегодня, сейчас. Следить за звездой в режиме реального времени, солнечная активность сегодня

Уровень солнечной радиации сегодня. Всплески радиации на Солнце, солнечная активность

Как известно Солнце излучает огромное количество радиации, от этого страдает и наша планета, особенно в период вспышек на звезде. Этот график отображает, насколько сильным является поток радиации в сторону Земли.

Вспышки на Солнце, уровень нарушений радиосвязи

С помощью предоставленной информации можно сделать анализ состояния нашей звезды в режиме реального времени, смотреть Солнце онлайн, снимки звезды сегодня и сейчас, изучать солнечную активность. Данные постоянно обновляются, поэтому можно сказать, что вы видите наше светило онлайн. Все процессы, которые происходят на Солнце так или иначе влияют на магнитосферу Земли, поэтому наблюдение за Солнцем и анализ помогает лучше разбираться во всех этих процессах и более точно предсказывать магнитные бури.

Появились пятна — уделите более пристальное внимание своему здоровью. Доказано, что магнитным бурям подвержены абсолютно все люди. Но у одних — защитные механизмы срабатывают лучше, у других — хуже. Причины такой разницы ученым непонятны.

КАК ВЕСТИ СЕБЯ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ? Обобщающий совет врача-терапевта Мирославы БУЗЬКО: около 70% инфарктов, гипертонических кризов и инсультов случаются как раз во время магнитных бурь. Ученые выяснили, что во время увеличения солнечной активности, кровь курсирует по капиллярам значительно медленнее. Наступает кислородное голодание тканей органов. Возрастает уровень холестерина и адреналина. Это приводит к повышенной утомляемости, к снижению жизненной активности. В дни магнитных бурь отекает лицо. Гипертоникам в такие дни без лекарств выходить не стоит >

ВПЕРВЫЕ! На нашем портале начата прямая трансляция с Международной космической станции: жизнь космонавтов, служебные переговоры, стыковки, виды Земли в реальном времени . Космос-онлайн — ЗДЕСЬ!

Кстати, неспокойная геомагнитная обстановка, создаваемая на Земле Солнцем, наиболее актуальна для тех, кто живет поближе к Северу. Это вызвано строением нашей планеты и ее положением в космосе. Территориально больше всего достается солнечных бурь — России (Сибирь и Европейский Север), США (Аляска) и Канаде.

Напомним, что солнечные изображения появляются на портале с временной задержкой, необходимой на их передачу с космической обсерватории и обработку для показа. Все проделывается в автоматическом режиме.

Если Вы видите на изображении или искаженную «картинку» — это означает, что произошел технический сбой. Иногда, в этом может быть само Солнце, которое в очередной раз выплеснуло на окружающих свою гигантскую энергию: А выбросы эти могут очень серъезно угрожать нашей цивилизации. Большая часть современных электронных устройств не защищены от воздействия аномальных солнечных излучений. Они могут выйти из строя моментально.

О нынешнем неблагоприятном прогнозе активности Солнца и о причинах, которые могут сильно разрушить земную инфраструктуру, напомним, можете прочитать в материале «Ахиллесова пята нового века»

Наблюдайте за жизнью настоящей Звезды! От нее реально зависит наша с Вами жизнь:

(Трансляция обеспечивается благодаря открытости в предоставлении информации со стороны космических агентств ЕС и NASA)

Иформер воздействия Солнца

Показаны средние прогнозные значения глoбaльного геомагнитного индекса Кр, на основе геофизических данных с двенадцати обсерваторий мира, собранных Службой Солнца SWPC NOAA. Данные нижеприведенного прогноза обновляются ежедневно. Кстати, Вы можете легко убедиться, что ученые почти не умеют прогнозировать солнечные события. Достаточно сравнить их предсказания с реальной ситуацией. Сейчас прогноз на три дня выглядит следующим образом:

Кр-индекс — характеризует общепланетарное геомагнитное поле, то есть — в масштабах всей Земли. По каждому дню показаны восемь значений — на каждый трёхчасовой интервал времени, в течении суток (0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-00 часов). Время указано московское (msk)

Вертикальные линии ЗЕЛЕНОГО цвета ( I ) — безопасный уровень геомагнитной активности.

Вертикальные линии КРАСНОГО цвета ( I ) — магнитная буря (Kp>5). Чем выше красная вертикальная линия, тем сильнее буря. Уровень, с которого вероятны заметные влияния на здоровье метеочувствительных людей (Kp=7) отмечен горизонтальной линией красного цвета.

Ниже вы можете видеть реальное отображение геомагнитного воздействия Солнца. По шкале значений Kp-индекса определяйтесь со степенью его опасности для вашего здоровья. Цифра выше 4-5 единиц означает наступление магнитной бури. Отметим, что в данном случае, на графике оперативно отображается уровень солнечного излучения уже достигшего Земли. Эти данные фиксируются и выдаются каждые три часа несколькими станциями слежения в США, Канаде и Великобритании. А сводный результат мы видим благодаря Центру космических прогнозов ( NOAA/Space Weather Prediction Center)

ВАЖНО! Учитывая, что опасный выброс солнечной энергии достигает Земли не ранее, чем через сутки, вы сами, с учетом оперативных изображений Солнца, транслируемых выше, сможете заранее подготовться к неблагоприятному воздействию, уровень которого отображается ниже.

Индекс геомагнитной возмущенности и магнитные бури

Индекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp 4 — сильные возмущения.

Рентгеновское излучение Солнца —
Геомагнитное воздействие на Земле —

Обозначение информера солнечного воздействия

Рентгеновское излучение Солнца *

Normal : Обычный солнечный рентгеновский поток .

Active : Возросшее солнечное рентгеновское излучение.

M Class Flare : Вспышки Класса М.

X Class Flare : Мощная вспышка класса X.

Mega Flare : Мега Вспышка. Сверхмощное рентгеновское воздействие.

Данные поступают каждые 10 минут со спутников (GOES 8 и GOES 10).

Геомагнитное воздействие Солнца *

Unsettled : возрастающая активность геомагнитного поля.

Storm : мощная вспышка(и) — геомагнитная буря.

* Земля защищает нас от неблагоприятного излучения Солнца своей атмосферой и магнитным полем. Например, рентгеновское воздействие, достигающее земли — минимальное. Геомагнитное — значительно более сильное. Их влияние на наше здоровье зависит от индивидуальных особенностей каждого человека. Для одних — мощные вспышки (красная зона): вопрос жизни и смерти, для других — не замечаемое явление. Наука не может пока дать ответа на такую космическую избирательность. Контролируйте зависимость своего самочувствия сами.

Теперь Вы полностью вооружены информацией. Можете по другому, на современном уровне, выстраивать взаимоотношения с ближайшей к нам звездой по имени Солнце. Здоровья Вам и благоприятного взаимодействия!

Здесь можно смоделировать Карта звездного неба онлайн на текущий момент времени и для каждой местности. Скачать и распечатать. Удобно тем пользователям которые что-то наблюдают над собой, но не знают какой это астрономический обьект.

График солнечной активности за последние 400 лет

Спектральную интенсивность потока энергии d ∕ ( dP ∕dS) радиоизлучения Солнца на частоте 2.8 ГГц (длина волны – 10.7 см) c 1947 г. регулярно измеряют и используют в качестве инегрального показателя активности Солнца.

Результаты измерений выражают в solar flux units – sfu – солнечных единицах потока – сеп (с. е. п.): 1 сеп = 10 -22 Вт·м -2 ·с (или Вт·м -2 ·Гц -1 ). Для краткости эту физическую величину часто называют 10.7 cm flux и обозначают F10.7. По-русски F10.7 называют ‘поток (радиоизлучения Солнца) на волне (длиной) 10,7 см’.

До 1947 г. активность Солнца оценивали по числу солнечных пятен, в качестве показателя используя относительное число солнечных пятен – sunspot number (число Вольфа (W) – Wolf number), рассчитываемое из числа пятен и числа групп пятен (а в XVII веке – просто число пятен).

По таблице солнечной активности внизу Вы можете определить какая активность Солнца была в момент Вашего рождения:

Источник

Adblock
detector