Способы преобразования солнечной энергии и их КПД
Излучение Солнца все время несет к Земле энергию. Это, по существу, электромагнитная энергия. Спектр электромагнитного излучения Солнца лежит в широком диапазоне: от радиоволн до рентгеновских лучей. Максимум его интенсивности приходится на видимый свет, а именно — на желто-зеленую часть спектра. В целом можно сказать, что энергия солнечного излучения управляет жизнью на Земле, климатом и погодой на нашей планете — вся живая природа на Земле обязана своим существованием Солнцу.
Дело в том, что от Солнца — к верхним слоям земной атмосферы непрерывно поступает в форме излучения мощность порядка 174 петаватт (пета — 10 в 15 степени). При этом 16% поступающей энергии поглощается верхними слоями атмосферы, а 6% — отражается от нее. В зависимости от погодных условий, в средних слоях атмосферы также происходит отражение до 20%, а поглощается около 3% приходящей от Солнца энергии.
Таким образом, наша атмосфера рассеивает и фильтрует значительную часть спектра, пропуская, однако, к поверхности земли немалую его долю в форме инфракрасного и немного ультрафиолетового. В результате мы можем наблюдать круговорот воды в природе, фотосинтез растений, и имеем среднюю температуру земной поверхности около 14°C.
Технология, позволяющая человечеству использовать данную энергию практически и осознанно, называется солнечной энергетикой. И такое положение не лишено здравых оснований, ведь по оценкам ученых потенциал энергии Солнца, которая может быть принята на поверхности земли и преобразована в полезную для человека форму, составляет на сегодняшний день в максимуме почти 49,9 эксаджоуль в год (экса — 10 в 18 степени), что в 10000 превосходит нынешние потребности человечества.
Даже в Германии, где климат не особо солнечный, энергия, которую можно было бы в идеале получить от Солнца, в 100 крат превзошла бы потребности всей страны. А в Австрии на 1 квадратный метр поверхности земли приходится до 1480 кВт ⋅ ч в год. И лишь 50% этой энергии принимается в стране солнечными концентраторами, осуществляющими нагрев теплоносителя в своем фокусе.
Далее давайте рассмотрим наиболее приемлемые на сегодняшний день способы преобразования солнечной энергии, и оценим их коэффициент полезного действия (КПД).
Солнечный коллектор
Солнечные коллекторы, хотя и относятся к низкотемпературным установкам, тем не менее они позволяют добывать примерно 1250 кВт ⋅ ч на квадратный метр энергии в год. Энергия получается здесь в форме тепла, пригодного для промышленного отопления и обеспечения горячего водоснабжения.
Практически установка преобразует энергию, даваемую видимым светом и ближним инфракрасным излучением, — в тепло, поскольку разогревается здесь теплоноситель — вода. При отсутствии забора тепла (застое) коллекторы такого плана способны нагреть воду до 200°C.
Установка имеет покрытие из специального абсорбера, хорошо поглощающего солнечное излучение, и передающего тепло теплопроводящей системе. Селективное покрытие обычно представляет собой черный никель или напыление оксида титана. Среднестатистический КПД таких установок 50%.
Параболоцилиндрическое зеркало
Установки на базе параболоцилиндрических зеркал относятся к среднетемпературным установкам. Они позволяют получать 375 кВт ⋅ ч на квадратный метр электрической и тепловой энергии в год. В фокусе такой установки располагается трубка (внутри которой теплоноситель — масло) или фотоэлектрический преобразователь. Масло в трубке разогревается здесь до 350°C и даже больше.
Одно параболоцилиндрическое зеркало, из которых набирается крупная электростанция, имеет протяженность до 50 метров. Термальная эффективность параболических концентраторов доходит до 73 % при температуре нагрева теплоносителя 350°C. Средний КПД подобных установок доходит до 20%.
Гелиостатные системы
Гелиостатные системы относятся к высокотемпературным установкам. На них получают 500 кВт ⋅ ч на квадратный метр электрической энергии в год, кроме того гелиостатные установки дают возможность получать и тепловую энергию. Здесь нагревается теплоноситель на основе натрия и газ (двухконтурная система с термической солью). Множество зеркал отражают солнечное излучение, направляя его на емкость с теплоносителем, расположенную на вершине башни. КПД таких систем достигает 20%.
Солнечная батарея
Солнечные батареи относятся к электроэнергетическим установкам, и позволяют получать при помощи фотоэлектрических преобразователей 250 кВт ⋅ ч электроэнергии в год. Их эффективности бывает достаточно чтобы обеспечить электричеством небольшое домашнее хозяйство в солнечном регионе, также небольшие солнечные панели в состоянии снабжать электроэнергией дорожные знаки, осветительные приборы, оросительные системы и т. д.
На сегодняшний день эффективность солнечных батарей оставляет желать лучшего, их средний КПД относительно невысок, около 10%, но технология все время совершенствуется.
Источник
Термодинамические установки преобразуют энергию солнца
Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте
Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки
Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники
Бесплатный архив статей
(200000 статей в Архиве)
Алфавитный указатель статей в книгах и журналах
Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта
Дизайн и поддержка:
Александр Кузнецов
Техническое обеспечение:
Михаил Булах
Программирование:
Данил Мончукин
Маркетинг:
Татьяна Анастасьева
При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua
сделано в Украине
Солнечные водонагревательные установки. Термодинамический преобразователь солнечной энергии
Резкий рост цен и тарифов на электро- и тепловую энергию, стремление потребителей к повышению надежности и использованию собственных автономных источников энергоснабжения, а также повышение интереса к использованию экологически чистых возобновляемых источников энергии ведут к быстрому развитию отечественного рынка солнечных водонагревательных установок (СВУ), по своим технико-экономическим показателям и технологической проработанности наиболее подготовленных к широкому коммерческому использованию не только в южных регионах России, но и в ее средней полосе и даже в северных регионах.
Вместе с тем развитие этого рынка в России сдерживается рядом факторов, среди которых высокая стоимость СВУ, их недостаточная надежность и долговечность являются наиболее существенными. Многолетние наблюдения за эксплуатационной надежностью солнечных коллекторов, показали, что большинство конструкций не обеспечивают установленного российским стандартом минимального срока службы — 10 лет.
Стоимость солнечных коллекторов российских производителей сегодня лежит в диапазоне от 100 до 200 долларов в расчете на 1м2 их тепловоспринимающей поверхности. С учетом стоимости монтажа и необходимого дополнительного оборудования и комплектующих изделий потребителю солнечные водонагревательные установки обходятся в 200 — 500$/м . Зарубежные аналоги СВУ, предлагаемые на российском рынке, оказываются еще более дорогими.
Таким образом, задача совершенствования конструкции солнечных коллекторов, снижения их стоимости при одновременном увеличении срока надежной эксплуатации является чрезвычайно актуальной.
а) систему улавливания падающей радиации;
б) приемную систему, преобразующую энергию солнечного излучения в тепло, которое передается теплоносителю;
в) систему переноса теплоносителя от приемника к аккумулятору или к одному или нескольким теплообменникам, в которых нагревается рабочее тело;
г) тепловой аккумулятор;
д) теплообменники, образующие горячий и холодный источники тепловой машины.
Системы улавливания солнечного излучения и конструкции термопреобразователей
Системы улавливания солнечной радиации обеспечивают разные степени концентрации (рис.3.1).
Рис.3.1. Системы улавливания солнечной энергии
Малая степень концентрации (порядка 100) получается при использовании отражающих поверхностей, концентрирующих энергию при любом направлении прихода солнечных лучей. Наблюдение за Солнцем осуществляется в этом случае с помощью упрощенной системы управления. К устройствам такого типа относятся параболоцилиндрические отражатели, ось которых либо горизонтальна, либо перпендикулярна плоскости движения Солнца. Управляется такая установка только в соответствии с изменением положения Солнца на небосводе в течение дня. Изменение положения Солнца в течении года при этом не учитывается, и принимаются меры лишь к тому, чтобы фокальное изображение не выходило за пределы поверхности приемника концентрированного излучения.
Средняя степень концентрации (порядка 1000) получается при использовании фокусирующих гелиостатов, управляемых по двум вращательным степеням свободы. Таким гелиостатом может быть зеркало в форме параболоида вращения, ось которого ориентируется на Солнце.
Высокая степень концентрации осуществляется единичной оптической системой (плоские гелиостаты и параболоидный отражатель). Она позволяет достичь весьма высоких температур.
Сконцентрированное солнечное излучение поглощается поверхностью приемника и преобразуется в тепло. Чтобы снизить потери тепла, связанные с излучением нагретым приемником в тепловой области спектра, поверхность приемника покрывают тонкой пленкой из селективно поглощающих материалов. Это позволяет значительно повысить КПД системы.
Конструкции термопреобразователей. Возможны две принципиальные схемы. В первой (рис.3.2А) в приемнике нагревается теплоноситель, в связи с чем обеспечивается тепловая загрузка аккумулятора. При этом рабочее тело нагревается от аккумулятора, который сглаживает изменения в поступлении солнечной радиации. Таким образом, аккумулятор постоянно играет роль буфера, а связь системы «приемник-аккумулятор» с тепловой машиной осуществляется с помощью, по меньшей мере, одного теплообменника.
Во второй схеме (рис. 3.2Б) в приемнике непосредственно нагревается рабочее тело. Зарядка аккумулятора осуществляется путем отвода части нагретого тела, а связь с тепловой машиной происходит без промежуточных устройств.
В первой схеме по сравнению со второй имеет место в среднем большее снижение температурного напора, т.е. разность температур между нагревателем и холодильником тепловой машины. Во второй схеме тепло теряется лишь при аккумулировании и возврате. Однако в первом случае тепловая машина и ее вспомогательные устройства не подвержены случайным колебаниям температуры даже при отсутствии системы регулирования. Кроме того, во многих случаях теплоноситель сам играет роль теплового аккумулятора.
Рис.3.2. Схема термодинамического преобразования солнечной энергии: А — схема с теплообменником; Б — схема без теплообменника
В настоящее время накопление энергии осуществляется за счет аккумулирования тепла.
Тепловой аккумулятор — дорогостоящий элемент. В зависимости от температуры системы аккумулирование энергии обычно подразделяют на низко температурные (до 100°C), среднетемпературные (от 100 до 550°C) и высокотемпературные (>550°C).
Низкотемпературные аккумуляторы в частности водяные, нашли широкое применение в гелиотехнике для отопления зданий и горячего водоснабжения. Для низкотемпературного аккумулирования используют также обратимые реакции гидратации и сольватации солей и кислот, а также процессы фазового перехода. Для этих целей в качестве теплоаккумулирующих веществ используют парафины и эмульсии, состоящие из парафина и воды. Скрытая теплота плавления парафина порядка 44 кал/г, а температура плавления 35 — 50°C.
Новый тип систем термохимического аккумулирования «Тепидус» разрабатывается в Швеции. В этой установке используется процесс выделения тепла при гидратации сульфида натрия.
Для среднетемпературного аккумулирования, а также в качестве теплоносителя используют соли и их эвтектики, характеризующиеся температурой плавления в несколько сот градусов и большой величиной скрытой теплоты фазового перехода.
Весьма перспективны для среднетемпературного аккумулирования гидраты оксидов щелочноземельных металлов. Использование процессов аккумулирования реакций гидратации оксидов отличается целым рядом достоинств. Это высокая плотность запасаемой энергии, простое долгосрочное аккумулирование при температуре окружающей среды, компактность твердого энергоаккумулирующего вещества, низкая его стоимость, получение достаточно высокопотенциального тепла на стадии гидратации.
Высокотемпературное аккумулирование осуществляется с помощью обратимых экзоэндотермических реакций. При этом реакции можно разделить на две группы: реакции каталитического разложения, продукты которых можно не разделять и хранить вместе, и реакции, протекающие без катализаторов, продукты которых должны быть разделены при температуре солнечного приемника, чтобы предотвратить обратную реакцию.
Выбор типа термодинамического цикла и природы рабочего тела определяется областью рабочих температур теплового двигателя, т. е. характеристики системы концентрации, аккумулятора и параметров цикла тесно взаимосвязаны. В солнечных установках с концентрацией предпочтение отдается пароводяным циклам.
Смотрите другие статьи раздела Альтернативные источники энергии.
Читайте и пишите полезные комментарии к этой статье.
Источник