Как выбрать телескоп
Далекие неизведанные миры и яркие звезды, загадочные небесные тела и бесконечная Вселенная… Что может быть интереснее? И разве легко найти более интригующую тему? Звездное небо – зрелище всегда завораживающее, способное увлечь и пытливый детский ум, и пылких юных романтиков, и людей постарше. А потому неудивительно, что почти каждый из нас порой обращает взор ввысь, пусть даже неосознанно пытаясь проникнуть в тайны мироздания. И лучшим помощником в таком исследовании может стать телескоп.
Что мы обычно представляем при упоминании подобного устройства? Как правило, на ум приходит образ эдакой подзорной трубы увеличенного размера, поставленной для устойчивости на специальную треногу. При этом с помощью термина «телескоп» обозначают целый класс разнообразных технических средств, предназначенных для исследования космоса. И многие из них далеки от привычного стереотипа.
В основе конструкции многих телескопов лежат линзы и зеркала различного размера, а также всевозможные варианты их комбинирования. Это так называемые оптические телескопы. Линзы и зеркала необходимы им для сбора света и увеличения изображения таким образом, чтобы его можно было рассмотреть в окуляр. Именно на оптических телескопах, которые можно использовать в домашних условиях или взять с собой за город, мы и остановимся подробнее. Они предназначены для тех, кто увлекается астрономией, и позволяют начать знакомство со звездным небом или оттачивать отдельные навыки изучения небесных объектов, светил и явлений.
ВИДЫ ТЕЛЕСКОПОВ. ИХ ОСОБЕННОСТИ
Оптические телескопы можно разделить на несколько групп:
— линзовые телескопы (рефракторы);
— зеркальные телескопы (рефлекторы);
— зеркально-линзовые телескопы (катадиоптрики).
Рефракторы отличает классическая конструкция. Они больше всего похожи на подзорную трубу. Изображение в таких телескопах строится с помощью двух линз. Рефракторы предпочтительнее использовать для наблюдения ярких небесных объектов (например, Луны, планет Солнечной системы, двойных звезд), а также для дневных земных наблюдений. Заглянуть в глубины космоса с помощью таких телескопов более проблематично, так как они не умеют концентрировать слабое свечение от удаленных небесных объектов. Преимущества рефракторов: качество изображения (благодаря высокой контрастности), простота эксплуатации (нет необходимости в частом техническом обслуживании), терпимость к смене температуры (это важно при использовании устройства как в помещениях, так и на улице). Недостатки: «окрашивание» рассматриваемых объектов (при наблюдении может быть заметно синее или фиолетовое окаймление ярких объектов), высокая цена для моделей с диаметром объектива более 100 мм. Ниже приведен пример изображения в телескоп-рефрактор (явно заметна синяя кайма по кромке объекта).
Рефлекторы строят изображение при помощи вогнутого и диагонального зеркал (в более дорогих моделях используется параболическое зеркало). Производство таких телескопов обходится дешевле, что связано с особенностями конструкции. Именно поэтому за сопоставимую сумму можно приобрести рефлектор с большей апертурой (диаметром объектива), чем у рефракторов. Это влияет на производительность устройства. В частности, рефлекторы с большой апертурой хорошо концентрируют свет, поэтому часто предпочтительнее рефракторов при наблюдении небесных объектов и явлений за пределами Солнечной системы, испускающих слабое свечение. Кроме стоимости к достоинствам таких телескопов можно отнести их компактность, отсутствие дефектов изображения, устойчивость. Особенности конструкции можно считать и относительным недостатком. Телескоп такого типа массивнее рефрактора. В него необходимо смотреть под углом, что может быть непривычно для начинающих астрономов. Еще один недостаток — относительно низкая контрастность изображения. Ниже приведены примеры изображений Туманности Андромеды (слева), Звездного скопления Плеяды (по центру) и Туманности Ориона (справа) в телескоп-рефлектор.
Катадиоптрики сочетают особенности конструкции как рефлекторов, так и рефракторов, а также преимущества и недостатки моделей этих типов. Катадиоптрики, как правило, отличаются относительной компактностью. Еще одно преимущество зеркально-линзовых телескопов — качество изображения (без искажений, свойственных рефлекторам, и «окрашиваний», как у рефракторов). Модели подобного типа не нуждаются в частом техническом обслуживании. Недостатки: низкая контрастность изображения (по сравнению с рефракторами), достаточно высокая стоимость. Ниже приведено изображение Луны в телескоп-катадиоптрик.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Выбор телескопа зависит не только от предполагаемого бюджета покупки, но и от планируемых сценариев наблюдения. При этом важно учитывать не только принадлежность телескопа к одной из групп, но и отдельные технические характеристики каждой модели. При покупке телескопа часто возникают дилеммы. На какие характеристики следует обращать внимание в первую очередь? Учитывать возможности устройства концентрировать свет от далеких небесных объектов или увеличивать эти объекты? Казалось бы, ответ на поверхности: всего и побольше. Впрочем, на практике такое сочетание не всегда возможно, чему преградой в том числе ценовые ограничения.
Рассмотрим основные технические характеристики телескопов подробнее.
Диаметр объектива (апертура) — важнейший параметр, влияющий на возможности телескопа. От него зависят уровень концентрации света устройством, что в свою очередь влияет на способность телескопа показывать тонкие детали объектов, а также минимальное и максимальное полезное увеличение. Кстати, именно на возможности телескопа концентрировать свет мы рекомендуем обращать особое внимание. Логика проста: чтобы рассмотреть кошку в темной комнате, человеку нужен скорее фонарь, чем лупа. Такой подход справедлив и в случае изучения звездного неба. Многие небесные объекты имеют значительные размеры, позволяющие созерцать их без дополнительного увеличения. В этом случае важна именно функция концентрации тусклого света от этих объектов. Именно поэтому телескоп с увеличенной апертурой, хорошо концентрирующей слабый свет, теоретически позволяет детальнее рассмотреть звездное небо, отдельные объекты и явления на нем (в частности тусклые объекты). Именно поэтому справедливо правило, согласно которому при прочих равных характеристиках оправдан вариант покупки телескопа с большей апертурой. При этом важно иметь ввиду, что увеличение главного зеркала или объектива неизбежно влечет увеличение габаритов всего устройства, что одновременно сокращает количество сценариев его использования. Слишком большой телескоп сложнее взять с собой. А ведь именно на природе, вдали от городских огней, открываются дополнительные возможности для изучения звездного неба. Поэтому при покупке любительского или полупрофессионального оптического телескопа оптимальным представляется вариант выбора моделей с апертурой от 70 до 130 мм.
Фокусное расстояние объектива — это расстояние, на котором линзы или зеркало объектива строят изображение изучаемого объекта. От фокусного расстояния объектива зависит максимальное полезное увеличение и светосила объектива. Светосила, в свою очередь, определяет возможности устройства концентрировать свет, позволяет разглядеть в телескоп тусклые небесные объекты. Важно учитывать, что при увеличении фокусного расстояния увеличивается максимальное полезное увеличение, а одновременно падает светосила. Здесь важен баланс характеристик.
Максимальное полезное увеличение. Безусловно, этот параметр играет серьезную роль. Увеличение важно при изучении любых объектов и явлений звездного неба, но первостепенно при условии их достаточной яркости. Например, при изучении планет Солнечной системы можно рассмотреть большее число деталей этих объектов, используя значительное увеличение. Впрочем, ограничивать себя только пределами нашей системы, пожалуй, нелогично. Именно поэтому обращать внимание исключительно на максимальное полезное увеличение неправильно. Важно учитывать, что чрезмерное увеличение еще и накладывает дополнительные ограничения на использование телескопа. В этом случае становится ощутима вибрация трубы при прикосновении к ней, становятся заметны искажения, вызванные турбулентностью атмосферы, и др. Использование телескопа – это всегда умение найти оптимальное увеличение рассматриваемого объекта или явления с целью минимизации искажений.
Тип монтировки телескопа – особенности его установки на поверхности для направления на небесные объекты и явления с целью их изучения. Подобные манипуляции обусловлены вращением Земли и перемещением небесных объектов. То есть при длительном наблюдении за одним и тем же объектом требуется постоянная подстройка с учетом его текущего расположения. Выделяют азимутальные и экваториальные монтировки. Первая позволяет поворачивать телескоп в двух направлениях: по вертикальной и горизонтальной осям (схоже с поворотом камеры на штативе). Особенности конструкции монтировки второго типа подразумевают необходимость поворота телескопа вокруг лишь одной оси, что удобно при наведении телескопа по координатам объекта на звездном небе. Заметим, что вне зависимости от типа монтировки крайне важны ее вес, прочность и надежность. Неустойчивый телескоп, вибрирующий от малейшего прикосновения или дуновения, бесполезен. Кстати, существуют и так называемые моторизованные монтировки, позволяющие автоматически осуществлять подстройку устройства.
Другие параметры телескопов, по сути, являются производными от указанных выше. К ним относятся, например:
— диаметр и максимальное увеличение окуляров;
— относительное отверстие (показывает светосилу объектива);
— предельная звездная величина (характеризует оптическую мощь телескопа, его возможности показать звезду определенной величины в случае оптимальных условий наблюдения) и др.
КРИТЕРИИ ВЫБОРА
Подведем итоги. При покупке оптического телескопа важно определиться не только с бюджетом покупки, но и с целью приобретения. При этом нужно учитывать, что грамотно выбранный телескоп способен прослужить долгие годы. Этот вид устройств, по сути, не устаревает. Даже несмотря на то, что технологии не стоят на месте, и современные исследователи звездного неба могут использовать телескопы с такими дополнительными функциями, как моторизованная монтировка или аудиосопровождение (что, безусловно позволяет наблюдать небесные объекты и явления подчас с большим интересом), с не меньшим успехом долгие годы можно пользоваться и моделями без дополнительных «наворотов». Хороший телескоп часто покупается один раз и на всю жизнь. Именно поэтому к его покупке нужно подойти с должной серьезностью, не ограничивать выбор минимальным бюджетом. Вместе с тем, справедлив и другой подход: составить корректное мнение о возможностях телескопа и сделать оптимальный выбор часто можно ли самостоятельно опробовав возможности данных устройств. И именно поэтому не всегда целесообразна покупка сразу дорогой модели.
Такой выбор позволит без чрезмерной переплаты увлечь ребенка темой изучения звездного неба, а взрослому любителю астрономии определиться с требуемым функционалом телескопа.
Желающим заглянуть в глубины космоса и не ограничивающим себя лишь пределами Солнечной системы подойдут модели среднего ценового диапазона (от 10 до 20 тыс. руб.), использующие оптическую схему типа «рефлектор» с диаметром апертуры 110-120 мм и азимутальной или экваториальной монтировкой. Такой телескоп сможет стать надежным другом для астронома-любителя во многих ситуациях, связанных с его хобби, и позволит развить навыки изучения звездного неба.
Наконец, исследователи космоса, желающие получить устройство с дополнительными возможностями, могут рассмотреть варианты покупки телескопа-катадиоптрика (в значительной степени подходит любителям выезжать за город или даже путешествовать с телескопом),
а также телескопов рефракторного и рефлекторного типа с диаметром апертуры 90-130 мм (в том числе с моторизованной монтировкой) в верхнем ценовом диапазоне (более 20 тыс. руб.).
Источник
8 различных типов телескопов
Телескоп — это, по сути, инструмент, позволяющий наблюдать и изучать астрономические объекты на различных частотах электромагнитного спектра, от гамма-лучей до низкочастотных радиоволн (в том числе и видимой длины волны). По длине волны и частоте обнаруживаемого света телескопы можно разделить на различные типы. Но прежде чем углубиться в этот вопрос, давайте вкратце рассмотрим историю телескопов.
Самый ранний известный телескоп в истории появился еще в начале 1600 года в Нидерландах и предположительно был изобретен голландским производителем очков Иоанном Липперсгеем. Однако название «телескоп» не существовало до 1611 года и было придумано греческим математиком Иоаннис Димисианос.
К 1610 году итальянский эрудит Галилео Галилей уже разработал свою собственную улучшенную версию телескопа, с помощью которой он позже обнаружил четыре галилеевых спутника. Затем, примерно в конце 1660-х годов, Иссак Ньютон сконструировал первый в истории телескоп-рефлектор, который теперь известен как ньютоновский рефлектор.
В течение следующих трехсот лет или около того телескопы будут работать только на видимом спектре света, ограничивая, таким образом, объем доступной информации. Такие телескопы обычно называют оптическими. Только в середине 1900-х годов были разработаны телескопы, способные работать в различных длинах электромагнитных спектров волн.
Не все телескопы расположены на земной поверхности. Да, это так. Ряд усовершенствованных телескопов находятся на орбите вокруг Земли в космосе. Эти космические телескопы собирают свет с длинами волн, которые частично или полностью блокированы земной атмосферой.
Наземные телескопы
1. Оптические телескопы
Оптические телескопы собирают свет видимой длины волны (видимой невооруженным глазом) электромагнитного спектра. Это самые старые и наиболее часто используемые телескопы в мире. Пожалуй, самой важной особенностью оптического телескопа является его светосила, которая намного выше, чем у человеческого глаза.
Оптические телескопы можно разделить на три большие категории; рефракторные, рефлекторные и катадиоптрические оптические конструкции. Каждый из них имеет свои плюсы и минусы и имеет различное применение в астрономии.
Рефракционные телескопы
Рефракционные или диоптрические телескопы — это тип оптических телескопов, в которых для создания изображения используются линзы (вместо зеркал). Каждый рефрактор также имеет окуляр, который позволяет телескопу собирать больше света, чем невооруженный глаз человека.
По конструкции преломляющие телескопы можно разделить на четыре типа — Галилейский телескоп, Кеплеровский телескоп, Ахроматический и Апохроматический рефракторы.
Несмотря на то, что сегодня в мире существует всего несколько преломляющих телескопов исследовательского класса, когда-то они пользовались широкой популярностью. С развитием технологии изготовления линз в конце 19 века преломляющие телескопы стали золотым стандартом в астрономических наблюдениях.
Отражающий телескоп
Отражающий телескоп или отражатель формирует изображение с помощью одного зеркала или, в некоторых случаях, группы зеркал. Первый в мире функциональный телескоп-отражатель был разработан Исааком Ньютоном в 1668 году как альтернатива «некорректному» преломлению.
Несмотря на то, что они до сих пор не могут дать «идеальное» изображение, рефлекторы используются почти во всех других исследовательских телескопах из-за их физических достоинств.
Подобно рефракторам, отражающие телескопы можно разделить на три большие категории в зависимости от конструкции — это телескопы григорианского, ньютоновского и кассегреновского типов. Также есть несколько подтипов и специализированных расширений.
Катадиоптрические телескопы
Третий и менее известный тип оптических телескопов — это катадиоптрические телескопы. Они сочетают в себе элементы отражающих и преломляющих телескопов для создания гибридной оптической системы. Хотя такая оптическая система обычно используется в фарах транспортных средств, некоторые типы телескопов и астрономических камер также используют эту установку.
Катадиоптрические телескопы имеют несколько преимуществ перед телескопами других типов, в том числе лучшую коррекцию ошибок из-за более широкого поля зрения. Кроме того, они менее массивны и проще в изготовлении. Немногочисленные примеры катадиоптрических телескопов — телескоп Аргунова – Кассегрена, телескоп Максутова и камера Шмидта.
2. Радиотелескопы
Большая миллиметровая матрица Atacama
Радиотелескопы анализируют астрономические объекты на радиочастотах. Другими словами, они обнаруживают сигналы на длинах радиоволн от удаленных астрономических объектов. Пожалуй, наиболее важным компонентом радиотелескопа является его антенна (тарелка), также известная как параболическая антенна.
Поскольку радиосигналы, которые мы получаем от большинства астрономических тел, слабые, радиотелескопам требуются большие антенны, чтобы собрать достаточно данных, чтобы астрономы могли проводить свои исследования. В некоторых случаях несколько радиотелескопов связаны друг с другом электронным способом, что значительно увеличивает область их поиска (радиоинтерферометрия).
Поскольку большинство радиочастот способно проникать в атмосферу Земли, в космических радиотелескопах нет необходимости. Однако потенциально они могут помочь наземным.
Некоторые из диапазонов частот, которые в настоящее время используются радиотелескопами: Радиолиния нейтрального водорода, 23 ГГц, 33 ГГц, 41 ГГц, 61 ГГц, 94 ГГц, 1406 МГц и 430 МГц.
Коммерческое использование этих частот запрещено во многих странах для выполнения радиоастрономических задач.
Радиоинтерферометрия
В радиоинтерферометрии радиосигналы, захваченные несколькими антеннами на большой площади, объединяются вместе, чтобы максимизировать общее разрешение. Эта техника была представлена еще в 1946 году.
3. Солнечные телескопы
Солнечные телескопы, ранее известные как фотогелиографы, специально разработаны для наблюдения за солнцем в ближнем инфракрасном и ультрафиолетовом диапазонах волн. В отличие от большинства других типов, солнечные телескопы могут работать только в дневное время и обычно располагаются на вершине высокой белой конструкции.
Солнечный телескоп МакМата-Пирса, расположенный в Аризоне (США), является крупнейшим телескопом такого типа. Голландский открытый телескоп и солнечный телескоп Даниэля К. Иноуэ являются хорошими примерами солнечных телескопов.
Космические телескопы
Космический телескоп Хаббла | Изображение предоставлено НАСА.
Все началось еще в начале 1920-х годов, когда физики Герман Оберт, Константин Циолковский и Роберт Годдард, три отца-основателя астронавтики, размышляли над идеей космического телескопа, который можно было бы отправить на орбиту Земли с помощью ракеты. Это было началом эры нового класса телескопов.
Затем в 1946 году астрофизик-теоретик Лайман Спитцер из Принстонского университета рассказал о преимуществах такого прибора и о том, как космический телескоп может полностью исключить из телескопических наблюдений атмосферную турбулентность Земли.
Космический телескоп — это научный инструмент, который наблюдает за астрономическими объектами и выполняет другие исследования вне земной атмосферы.
В отличие от наземных телескопов, космические телескопы предлагают более точные наблюдения, поскольку они свободны от какой-либо атмосферной турбулентности и радиационных искажений. Ниже представлены различные типы космических телескопов.
4. Инфракрасные телескопы
Художественная концепция космического телескопа «Спитцер» | Изображение предоставлено НАСА
Инфракрасная астрономия является важной отраслью современной астрофизики. Поскольку большая часть инфракрасного излучения блокируется атмосферой Земли (относительно небольшая длина волны может пробиться сквозь нее), многие инфракрасные телескопы находятся в космосе.
Инфракрасные телескопы способны обнаруживать удаленные астрономические объекты в пыльных районах космоса. Они также играют важнейшую роль в изучении раннего состояния Вселенной. Однако, в отличие от большинства других длин волн, наблюдение на инфракрасной частоте несколько затруднено, поскольку каждое горячее тело испускает инфракрасное излучение.
Чтобы справиться с этой проблемой, инфракрасные телескопы оснащены специальными камерами, которые постоянно находятся при криогенных температурах (ниже -150 °C) и соединены с твердотельными детекторами.
Легендарный космический телескоп НАСА Спитцер — один из самых важных инфракрасных телескопов космического базирования на сегодняшний день.
5. Ультрафиолетовые телескопы
Атмосфера нашей Земли блокирует попадание на Землю большей части вредной радиации. Сюда входят ультрафиолетовые лучи. По этой причине излучение в ультрафиолетовом диапазоне можно наблюдать только из космоса.
Ультрафиолетовая астрономия позволяет исследователям более внимательно изучать далекие звезды и галактики. Большинство звезд излучают излучение в ближнем инфракрасном или видимом диапазоне длин волн, поэтому в ультрафиолетовом свете они кажутся незначительными. Видны будут только те звезды, которые находятся либо на ранней, либо на поздней стадии эволюции и намного горячее. Фактически, каждый горячий астрономический объект излучает ультрафиолетовое излучение.
Известные ультрафиолетовые космические телескопы
Первым космическим телескопом, способным наблюдать УФ-спектр, была камера/спектрограф в дальнем ультрафиолете, которая была развернута на поверхности Луны миссией Аполлон-16 в 1972 году.
Спектроскопический исследователь дальнего УФ-диапазона НАСА или FUSE и Swift Gamma-Ray Burst Emission являются двумя наиболее яркими примерами ультрафиолетовых телескопов.
Изображение Крабовидной туманности на нескольких длинах волн | Изображение предоставлено НАСА.
6. Рентгеновские телескопы
Рентгеновские телескопы предназначены для изучения очень далеких объектов в рентгеновских частотах. Подобно ультрафиолетовым волнам, частоты рентгеновского излучения блокируются земной атмосферой, поэтому их можно изучать только с помощью космических телескопов.
Основным компонентом рентгеновского телескопа являются зеркала (фокусирующие или коллимирующие), которые собирают излучение и проецируют его на специализированные детекторы. Рентгеновские телескопы с фокусирующими зеркалами нуждаются в длинном фокусе, т.е. зеркала должны располагаться на расстоянии нескольких метров от детекторов.
Известные космические рентгеновские телескопы
С 1960-х годов в космос было выведено почти пятьдесят рентгеновских телескопов. Первый известный рентгеновский спутник UHURU (Ухуру) провел обширные исследования Лебедь X-1 (источник рентгеновского излучения в созвездии Лебедя) и других известных рентгеновских источников. Рентгеновская обсерватория НАСА Чандра, запущенная в 1999 году, стала прорывом в области рентгеновской астрономии.
Чандра в 100 раз более чувствительна к слабым рентгеновским лучам, чем любой другой телескоп до ее запуска. Это стало возможным только благодаря более высокому угловому разрешению ее зеркал. Другими примечательными рентгеновскими обсерваториями являются NuSTAR (Nuclear Spectroscopic Telescope Array) и японский спутник Hitomi.
7. Микроволновые телескопы
Подобно рентгеновским лучам и ультрафиолетовому излучению, атмосфера Земли поглощает большую часть излучения на длине микроволновой волны, поэтому астрономам приходится полагаться на космические микроволновые обсерватории и телескопы для изучения космических микроволн.
Космические микроволны или космическое фоновое излучение — древнейшее электромагнитное излучение во Вселенной; остатки Большого взрыва. Хотя космические микроволновые телескопы обычно используются для изучения космологии ранней Вселенной, они также могут наблюдать синхротронное излучение и другие явления.
Известные космические микроволновые телескопы
Телескопы, установленные на WMAP NASA (Wilkinson Microwave Anisotropy Probe) и спутнике Planck ЕКА, возможно, единственные два действующих в настоящее время микроволновых телескопа космического базирования. Единственным известным космическим микроволновым телескопом был космический исследователь Cosmic background Explorer или COBE, который отключился в 1993 году.
8. Гамма-телескопы.
Гамма-лучи — самая динамичная форма электромагнитного излучения. В то время как гамма-лучи низкой энергии (в диапазоне МэВ) производятся солнечными вспышками, гамма-лучи высокой энергии (ГэВ), с другой стороны, генерируются только в результате экстремальных событий за пределами нашей солнечной системы, таких как сверхсветовой взрыв звезды и т. д. поэтому гамма-лучи важны для различных внегалактических исследований.
Однако их гораздо труднее наблюдать, чем рентгеновские волны. Фактически, на сегодняшний день не существует специализированного гамма-телескопа. Вместо этого астрономы используют вторичные средства для обнаружения потока гамма-лучей в небе, то есть черенковское излучение.
Хотя земная атмосфера действует как барьер для гамма-лучей, во многих случаях их можно наблюдать из нескольких наземных обсерваторий, включая HESS, HAWC и VERITAS.
Известные гамма-телескопы
В настоящее время существует только пять действующих космических телескопов, которые наблюдают за частотой гамма-излучения. Орбитальная обсерватория НАСА Swift, запущенная в 2004 году, обнаруживает загадочные гамма-всплески со всей Вселенной. Еще одна обсерватория NASA, Ферми, специально разработана для наблюдения высокоэнергетических вспышек пульсаров и черных дыр.
В то время как большинство космических спутников наблюдают или слушают только определенную длину волны, существует несколько многоволновых телескопов, которые могут собирать информацию из более чем одного участка электромагнитного спектра одновременно. Космический телескоп Хаббла является прекрасным примером таких телескопов. Он может наблюдать в ближнем инфракрасном, видимом и ультрафиолетовом диапазонах.
Источник