Главная ≫ Инфотека ≫ Философия ≫ Гипотеза математической вселенной Макса Тегмарка
Гипотеза математической вселенной Макса Тегмарка
Гипотеза математической вселенной (также известна как Конечный Ансамбль) — в физике и космологии, одна из гипотез «теории всего», предложенная физиком-теоретиком Максом Тегмарком[1][2].
Согласно гипотезе, наша внешняя физическая реальность является математической структурой. То есть, физический мир является математическим в определённом смысле, и «те миры достаточно сложные, чтобы удерживать самосознательные подструктуры, которые будут субъективно воспринимать себя как существующие в физически „реальном“ мире»[3][4]. Гипотеза предполагает, что миры, соответствующие различным наборам начальных состояний, физических констант, или совсем других уравнений, можно рассматривать как одинаково реальные. Тегмарк разрабатывает Гипотеза математической вселенной в рамках Гипотезы вычисляемой Вселенной, которая утверждает, что все математические структуры, которые можно вычислить, существуют.
Теорию можно рассматривать как:
вид пифагоризма или платонизма, потому что она утверждает существование математических объектов;
вид математического монизма, потому что она отрицает существование чего-либо кроме математических объектов;
формальное выражение онтического структурного реализма.
Тегмарк утверждает, что гипотеза не имеет свободных параметров и возможно экспериментальная. Таким образом, он отдает ей большой приоритет относительно других «теорий всего» по принципу экономии (Бритва Оккама). Он полагает, что сознательный опыт будет проходить в форме математических «самосознательных подструктур», которые существуют в физически «реальном» мире.
Гипотеза связана с антропным принципом и категоризацией Тегмарка о четырёх уровнях мультивселенной[5].
Андреас Альбрехт из лондонского Имперского колледжа назвал теорию «провокационным» решением одной из центральных проблем, стоящих перед физикой. Несмотря на то, что он «не посмеет» идти так далеко, чтобы сказать, во что он верит, он отметил, что «на самом деле довольно трудно построить теорию, где всё, что мы видим, является всем, что есть»[6].
Источник
∀ x, y, z
Главная ≫ Инфотека ≫ Математика ≫ Книги ≫ Наша математическая Вселенная. В поисках фундаментальной природы реальности // Макс Тегмарк
Наша математическая Вселенная. В поисках фундаментальной природы реальности
Макс Тегмарк
Max Tegmark. Our Mathematical Universe: My Quest for the Ultimate Nature of Reality Издательство «CORPUS», 2016 г. Серия: «Элементы», Книжные проекты Дмитрия Зимина Перевод с английского Александра Сергеева
Галилео Галилей заметил, что Вселенная ― это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время ― от микрокосма субатомных частиц к макрокосму Вселенной.
Глава 10. Физическая и математическая реальности (отрывок)
Математика, везде математика
Каков же ответ на главный вопрос жизни, Вселенной и всего такого? В книге «Автостопом по Галактике» Дугласа Адамса выясняется, что ответ на этот вопрос — 42, однако самой сложной частью задачи оказалось отыскание самого вопроса. В действительности, хотя наши любознательные предки задавались глобальными вопросами, их поиски «теории всего» менялись вместе с ростом знаний. По мере того как древние греки заменяли мифологические объяснения механическими моделями Солнечной системы, их акценты в этих вопросах смещались с почему на как.
С тех пор сфера наших вопросов сократилась в одних областях и разрослась в других (рис. 10.1). Некоторые вопросы отброшены как наивные или ошибочные, вроде объяснения размеров планетных орбит исходя из первичных принципов (это было популярно в эпоху Возрождения). То же самое может случиться с модными нынче попытками предсказания количества темной энергии в космосе, если окажется, что ее плотность в наших окрестностях является исторической случайностью (гл. 6). Тем не менее наша способность отвечать на другие вопросы превзошла самые смелые ожидания прежних поколений. Ньютон был бы поражен, узнав, что мы сумели определить возраст Вселенной с точностью до 1% и узнали устройство микромира в достаточной мере, чтобы сконструировать «Айфон».
Я считаю шутку Дугласа Адамса про 42 очень удачной, поскольку математика играет исключительную роль во всех этих успехах 1 . Та идея, что Вселенная в некотором смысле является математической, восходит по меньшей мере к пифагорейцам и породила многовековую дискуссию физиков и философов. Галилей утверждал, что Вселенная — это «величественная книга», написанная на языке математики. Лауреат Нобелевской премии по физике Юджин Вигнер в 60-х годах XX века настаивал, что «невероятная эффективность математики в естественных науках» нуждается в объяснении.
Фигуры, паттерны и уравнения
Мы переходим к рассмотрению по-настоящему радикального объяснения. Однако прежде необходимо уточнить, что именно мы пытаемся объяснить. Пожалуйста, оторвитесь на несколько секунд от чтения и оглядитесь. Где вся эта математика, которой мы собираемся заниматься? Разве математика — это не наука о числах? Вероятно, вам на глаза попадется несколько чисел, например пагинация в этой книге, но это лишь символы, изобретенные и изображенные людьми, так что вряд ли они отражают математическую сущность Вселенной в каком-либо глубоком смысле.
Из-за нашей системы образования многие приравнивают математику к арифметике. Но математика, как и физика, пришла к постановке более глубоких вопросов. Например, в приведенной выше цитате Галилей говорит о геометрических фигурах вроде окружностей и треугольников как о математических. Видите ли вы вокруг себя геометрические узоры или фигуры? (Дизайн вроде прямоугольной формы книги не в счет.) Но попробуйте бросить камешек и посмотрите, какую красивую форму придает природа его траектории! Галилей сделал замечательное открытие (рис. 10.2): траектория любых предметов имеет одинаковую форму, называемую перевернутой параболой. Более того, форму этой параболы можно описать простым уравнением: x = y 2 , где x — горизонтальное положение, y — вертикальное положение (высота). В зависимости от начальной скорости и направления эта форма может растягиваться и по вертикали, и по горизонтали, однако она всегда остается параболой.
Когда мы наблюдаем, как объекты движутся по орбитам в космосе, мы открываем другую повторяющуюся форму, показанную на рис. 10.3 — эллипс. Уравнение x 2 + y 2 = 1 описывает точки, лежащие на окружности, а эллипс — это просто растянутая окружность. В зависимости от начальной скорости, направления движущегося по орбите объекта и массы, вокруг которой он движется, форма этой орбиты может оказываться растянутой или наклоненной, однако всегда остается эллипсом. Более того, оконечность сильно вытянутого эллипса почти точно совпадает с параболой, так что все эти траектории — просто части эллипсов 2 .
Постепенно люди открыли в природе множество других повторяющихся форм и паттернов, охватывающих не только движение и гравитацию, но и такие разные области, как электричество, магнетизм, свет, теплота, химия, радиоактивность и субатомные частицы. Эти паттерны складываются в законы физики. Как и форму эллипса, эти законы можно описать, применяя математические уравнения (рис. 10.4). Почему?
Числа
Уравнения — не единственный скрытый в природе намек на математику: есть также числа. Я говорю не о творениях рук человеческих, вроде пагинации в этой книге, а о числах, которые выражают фундаментальные свойства нашей физической реальности. Сколько карандашей вы сможете расположить так, чтобы все они были перпендикулярны (под углом 90°) друг другу? Три: их можно разместить, например, вдоль трех стыков стен и пола в углу вашей комнаты. Откуда взялось число 3? Мы называем его размерностью пространства, но почему существует именно 3 измерения, а не 2, 4 или 42? Почему в нашей Вселенной существует (насколько мы можем судить) ровно шесть типов кварков? Есть много других «встроенных» в природу целых чисел (гл. 7), которые описывают, какого типа элементарные частицы существуют.
И, вдобавок к математическим гостинцам, существуют закодированные в природе величины, которые не являются целыми числами и требуют для записи дробных значений. Согласно моим подсчетам, природа закодировала 32 таких фундаментальных числа. Относится ли к ним число, которое появляется на индикаторе весов, когда вы встаете на них после ванны? Нет, оно не в счет, поскольку является мерой чего-либо (вашей массы), что день ото дня изменяется, а значит, не является фундаментальным свойством нашей Вселенной. Что можно сказать о массе протона (1,672622 × 10 −27 кг) или о массе электрона (9,109382 × 10 −31 кг), которые кажутся неизменными во времени? Они также не в счет, поскольку измеряются в килограммах, а это произвольная единица массы, придуманная людьми. Но если вы разделите одно из этих двух чисел на другое, получится нечто поистине фундаментальное: протон примерно в 1836,15267 раз массивнее электрона 3 .
Значение 1836,15267 — безразмерное число, подобное π или √2, в том смысле, что его значение не зависит ни от каких человеческих единиц измерения, вроде граммов, метров, секунд или вольт. Почему это значение так близко к 1836? Почему не 2013? Или не 42? Простой ответ состоит в том, что мы этого не знаем. Но, думаю, в принципе мы можем вывести и это число, и все остальные когда-либо измеренные фундаментальные постоянные природы, всего из 32 чисел, перечисленных в табл. 10.1.
Параметр
Смысл
Измеренное значение
g
Константа слабого взаимодействия при mZ
0,6520 ± 0,0001
θW
Угол Вайнберга
0,48290 ± 0,00005
gs
Константа сильного взаимодействия при mZ
1,220 ± 0,004
μ 2
Квадратичный коэффициент Хиггса
≈ −2 × 10 −34
λ
Четвертичный коэффициент Хиггса
≈ 0,5
Ge
Константа взаимодействия Юкавы для электрона
0,000002931 ± 10 −9
Gμ
Константа взаимодействия Юкавы для мюона
0,0006060 ± 0,0000002
Gτ
Константа взаимодействия Юкавы для таона
0,01022
Gu
Константа взаимодействия Юкавы для верхнего кварка
0,000014 ± 0,000003
Gd
Константа взаимодействия Юкавы для нижнего кварка
0,000029 ± 0,000003
Gc
Константа взаимодействия Юкавы для очарованного кварка
0,0073 ± 0,0001
Gs
Константа взаимодействия Юкавы для странного кварка
0,00054 ± 0,00003
Gt
Константа взаимодействия Юкавы для истинного кварка
0,995 ± 0,008
Gb
Константа взаимодействия Юкавы для прелестного кварка
0,0230 ± 0,0002
sin θ12
Угол смешивания кварков в ККМ-матрице
0,2243 ± 0,0016
sin θ13
Угол смешивания кварков в ККМ-матрице
0,0413 ± 0,0015
sin θ13
Угол смешивания кварков в ККМ-матрице
0,0037 ± 0,0005
δ13
Фаза смешивания кварков в ККМ-матрице
1,05 ± 0,24
θqcd
Нарушающая CP-симметрию вакуумная фаза КХД
−9
Gνe
Константа взаимодействия Юкавы для электронного нейтрино
−9
Gνμ
Константа взаимодействия Юкавы для мюонного нейтрино
−7
Gντ
Константа взаимодействия Юкавы для тау-нейтрино
2 2θ’12
Угол смешивания нейтрино в ПМНС-матрице
0,857 ± 0,024
sin 2 2θ’23
Угол смешивания нейтрино в ПМНС-матрице
≥ 0,95
sin 2 2θ’13
Угол смешивания нейтрино в ПМНС-матрице
≤ 0,098 ± 0,013
δ’13
Фаза смешивания нейтрино в ПМНС-матрице
?
ρΛ
Плотность темной энергии
(1,16 ± 0,07) × 10 −123
ξb
Барионная масса в расчете на фотон ρb/nγ
(4,66 ± 0,06) × 10 −29
ξc
Масса темной материи в расчете на фотон ρc/nγ
(24,9 ± 0,7) × 10 −29
ξν
Масса нейтрино в расчете на фотон ρν/nγ = (3/11)∑mνi
−29
Q
Скалярная амплитуда флуктуаций δH на горизонте
(2,0 ± 0,2) × 10 −5
n
Скалярный спектральный индекс
0,960 ± 0,007
Не пугайтесь названий в таблице: они не имеют отношения к тому, чем мы здесь занимаемся. Суть в том, что в нашей Вселенной есть нечто сугубо математическое, и чем пристальнее мы всматриваемся, тем, похоже, больше математики видим. Что касается природных констант, то имеются сотни тысяч безразмерных чисел, измеренных в разных областях физики: от отношения масс элементарных частиц до отношений характерных длин волн света, испускаемого различными молекулами. С помощью компьютеров, достаточно мощных, чтобы решать уравнения, описывающие законы природы, все до одного эти числа, по-видимому, могут быть определены на основе приведенных в табл. 10.1. Некоторые вычисления и измерения крайне сложны, и их до сих пор не удалось выполнить, а когда удастся, то, возможно, числа в теории и эксперименте не совпадут. Такого рода расхождения не раз случались в прошлом и, как правило, разрешались одним из трех способов:
Кто-нибудь находил ошибку в эксперименте.
Кто-нибудь находил ошибку в вычислениях.
Кто-нибудь находил ошибку в наших законах физики.
В последнем случае обычно удавалось найти более фундаментальные законы физики — как тогда, когда замена ньютоновских уравнений для гравитации эйнштейновскими позволила объяснить, почему Меркурий обращается вокруг Солнца не по идеальному эллипсу. Во всех случаях ощущение, что в природе есть нечто математическое, лишь усиливалось.
Если вы откроете еще более точные законы физики, то это может либо сделать число параметров менее 32 (табл. 10.1), позволив вычислить некоторые из этих величин по другим, содержащимся в таблице, — либо увеличить их число за счет добавления новых величин (относящихся, скажем, к массам новых типов частиц, которые, возможно, будут открыты на Большом адронном коллайдере).
Дополнительные улики
Что делать со всеми этими намеками на присутствие математики в нашем физическом мире? Большинство физиков привыкло, что природа по некоей причине описывается математикой, по крайней мере приближенно, и признают это как факт. В книге «Является ли Бог математиком?» астрофизик Марио Ливио заключает, что «ученые выбрали, над какими проблемами им работать, с учетом того, чтобы эти проблемы можно было решать математическими методами». Но я убежден, что причина глубже.
Во-первых, почему математика так успешно описывает природу? Я согласен с Вигнером: это требует объяснения. Во-вторых, на страницах этой книги мы постоянно сталкиваемся с уликами, указывающими на то, что математика не просто описывает природу. В некоторых отношениях природа является математической:
В гл. 2–4 мы видели, что сама ткань нашего физического мира, его пространство, является чисто математическим объектом в том смысле, что все неотъемлемые свойства пространства — число измерений, кривизна и топология — являются математическими.
В гл. 7 мы видели, что «начинка» нашего физического мира состоит из элементарных частиц, которые, в свою очередь, являются чисто математическими объектами в том смысле, что все их неотъемлемые свойства (приведенные в табл. 7.1 числа, например заряд, спин, лептонное число) являются математическими.
В гл. 8 мы видели, что существует нечто, возможно, даже более фундаментальное, чем наше трехмерное пространство с частицами в нем — это волновая функция и бесконечномерное гильбертово пространство, в котором она обитает. Частицы могут создаваться и уничтожаться, а также находиться в нескольких местах одновременно, однако была и всегда будет лишь одна волновая функция, движущаяся по гильбертову пространству в соответствии с уравнением Шредингера. И волновая функция, и гильбертово пространство являются чисто математическими объектами.
Что все это означает? Позвольте поделиться своим пониманием, и посмотрим, будет ли оно иметь для вас больше смысла, чем для профессора, сказавшего, что это похоронит мою карьеру.
Гипотеза математической Вселенной
К моменту получения университетского диплома я был захвачен всеми этими математическими уликами. Однажды вечером в 1990 году в Беркли я со своим другом Биллом Пуарье рассуждал о фундаментальной природе реальности. Внезапно мне пришло в голову, что наша реальность не просто описывается математикой, но и является математикой в очень специфическом смысле. Не какие-то ее аспекты, а вся целиком, включая нас самих 4 . Эта идея кажется безумной, так что, изложив ее Биллу, я много лет размышлял, прежде чем написать первую статью о ней.
Прежде чем погружаться в детали, вот логическая структура, к которой я прибегаю, размышляя об этом. Во-первых, есть две гипотезы. Первая, гипотеза внешней реальности (ГВР), кажется безобидной:
Существует внешняя физическая реальность, совершенно независимая от людей.
Вторая, гипотеза математической Вселенной (ГМВ), выглядит куда радикальнее:
Наша внешняя физическая реальность является математической структурой.
Во-вторых, у меня есть доказательство того, что при достаточно широком определении математической структуры из первой гипотезы вытекает вторая.
Первое мое допущение, гипотеза внешней реальности, не вызывает серьезных споров: я уверен, что большинство физиков согласно с этой старой идеей. Метафизические солипсисты открыто ее отвергают, а сторонники копенгагенской интерпретации квантовой механики могут отвергать ее на том основании, что не существует реальности без наблюдения. В предположении, что внешняя реальность существует, цель физических теорий состоит в описании того, как она устроена. Наши наиболее успешные теории, например общая теория относительности и квантовая механика, описывают лишь часть этой реальности: гравитацию или, скажем, поведение субатомных частиц. Но Святой Грааль теоретической физики — это «теория всего», исчерпывающее описание реальности.
Уменьшение нормы разрешенного багажа
Мой персональный поиск этой теории начинается с радикального рассуждения о том, на что она имеет право быть похожей. Если мы признаем, что реальность существует независимо от людей, то чтобы ее описание было полным, оно должно также быть корректно определенным для нечеловеческих существ — скажем, инопланетян или суперкомпьютеров, — которые не знакомы с человеческими понятиями. Иначе говоря, такое описание должно выражаться в форме, лишенной всякого человеческого «багажа» вроде понятий «частица», «наблюдение» и других слов естественного языка.
При этом все физические теории, которым меня учили, содержат две компоненты: математические уравнения и «багаж» — слова, объясняющие, как эти уравнения связаны с тем, что мы наблюдаем и интуитивно понимаем. Выводя из теории следствия, мы придумываем для них новые понятия и слова, например протоны, атомы, молекулы, клетки, звезды, поскольку ими удобно пользоваться. Важно помнить, однако, что эти понятия придуманы людьми. В принципе, все может быть вычислено без «багажа». Гипотетический идеальный суперкомпьютер способен вычислить, как состояние Вселенной изменяется во времени, без «человеческой» интерпретации, просто рассчитывая, как будут двигаться все частицы или как будет изменяться волновая функция.
Предположим, что траектория баскетбольного мяча на рис. 10.2 — это один из тех блестящих бросков, которые приносят победу в самый момент звучания финальной сирены, и после игры вы хотите описать другу, как это было. Поскольку мяч состоит из элементарных частиц (кварков и электронов), вы можете описать его движения без всяких упоминаний о баскетбольном мяче:
Это, однако, неудобно, поскольку время, которое понадобится для произнесения всего этого, превосходит возраст самой Вселенной. Это может быть и избыточно, поскольку все частицы получают толчок вместе и движутся как единое целое. Вот почему люди изобрели слово «мяч»: чтобы ссылаться на эту сущность и экономить время, описывая ее движение как целого. Мяч изготовили люди, но дело обстоит подобным же образом и в случае составных объектов естественного происхождения — молекул, камней, звезд и т. д.: придумывать для них слова удобно и ради экономии времени, и в качестве так называемых сокращающих абстракций, делающих понимание мира проще. Но при всей их полезности такие слова являются необязательным «багажом»: например, я неоднократно использовал в этой книге слово «звезда», однако вы можете в принципе заменить его определением звезды через ее составляющие, скажем таким: «гравитационно связанный сгусток около 10 57 атомов, часть которых вступает в термоядерные реакции». Иными словами, в природе есть множество сущностей, которым так и тянет дать название. Наверняка почти каждое человеческое сообщество имеет в языке слово для обозначения звезды, часто придуманное независимо и отражающее местные культурные и лингвистические традиции. Предполагаю, что и большинство внеземных цивилизаций в далеких планетных системах также изобрело название или символ для звезды, даже если они не пользуются для коммуникации звуками.
Другой замечательный факт: нередко можно математически предсказать существование таких заслуживающих имени сущностей, опираясь на уравнения, управляющие их частями. На этом пути можно предсказать всю «легоподобную» иерархию структур (гл. 7), от элементарных частиц до атомов с молекулами, а также все объекты на каждом уровне, которым люди дали запоминающиеся имена. Например, если вы решаете уравнение Шредингера для пяти или менее кварков, то оказывается, что есть лишь два способа, которыми они могут быть достаточно стабильно организованы: либо как сгустки из двух верхних кварков и одного нижнего, либо как сгустки из двух нижних кварков и одного верхнего. Люди ради удобства добавили в свой «багаж» названия для сгустков этих двух типов: протоны и нейтроны. Аналогично, если применить уравнение Шредингера к таким сгусткам, оказывается, что существует лишь 257 способов, которыми они могут быть устойчиво объединены друг с другом. Мы добавили в «багаж» название для этих протон-нейтронных ансамблей — атомные ядра, и придумали названия для каждого их типа: водород, гелий и т. д. Уравнение Шредингера также позволяет вычислить все способы соединения атомов в более крупные объекты, но на этот раз стабильных объектов оказывается настолько много, что всем им давать имена неудобно. Поэтому мы именуем только важные классы таких объектов (молекулы, кристаллы и т. д.) и наиболее распространенные или интересные объекты в каждом классе (вода, графит, алмаз).
Я рассматриваю такие составные объекты как эмерджентные в том смысле, что они возникают как решения уравнений, описывающих более фундаментальные объекты. Их эмерджентность — трудноуловимое свойство, поскольку исторически научный прогресс по большей части шел в противоположном направлении. Так, люди узнали о звездах прежде, чем поняли, что они состоят из атомов; узнали об атомах прежде, чем поняли, что они состоят из электронов, протонов и нейтронов; узнали о нейтронах прежде, чем открыли кварки. Для каждого эмерджентного объекта, который для нас важен, люди собрали «багаж» в форме новых понятий.
Того же характера эмерджентность и накопление человеческого «багажа» видны на рис. 10.5. Я привожу грубую схему организации научных теорий в генеалогическое древо, в котором каждая теория может быть выведена (по крайней мере в принципе) из более фундаментальных. Все эти теории имеют две составляющие: математические уравнения, а также слова, которые объясняют, как уравнения связаны с тем, что мы наблюдаем. Например, квантовая механика, как ее обычно излагают в учебниках, содержит обе компоненты (гл. 8): математическую, такую как уравнение Шредингера, и записанные на естественном языке фундаментальные постулаты вроде утверждения о коллапсе волновой функции. На каждом уровне иерархии теорий вводятся новые понятия (протоны, атомы, клетки, организмы, культуры и т. д.), потому что они удобны и охватывают суть того, что происходит, без обращения к вышестоящей, более фундаментальной теории. Все эти понятия вводят люди: в принципе, все может быть выведено из фундаментальной теории на вершине древа, хотя такой крайний редукционизм на практике обычно бесполезен. Грубо говоря, по мере движения вниз по древу количество слов увеличивается, а уравнений — уменьшается, едва не достигая нуля в таких предельно прикладных сферах, как медицина или социология. Напротив, теории, близкие к вершине, сильно математизированы, и физики с трудом описывают понятия в доступном обывателю виде, если это вообще возможно.
Высшая цель физики — найти то, что в шутку называют теорией всего (ТВ), из которой может быть выведено все остальное. Ей предстоит занять место большого вопросительного знака наверху древа теорий. Здесь чего-то недостает (гл. 7): у нас нет целостной теории, объединяющей гравитацию и квантовую механику. ТВ стала бы полным описанием внешней физической реальности, существование которой предполагается в гипотезе внешней реальности. Выше я показал, что полное описание должно быть свободно от любого «багажа», то есть не должно содержать никаких понятий. Иными словами, оно должно быть чисто математической теорией без объяснений или «постулатов», как в учебниках по квантовой механике (математики прекрасно справляются — и часто этим гордятся — с изучением абстрактных математических структур, которые не имеют никакого внутреннего смысла или связи с физическими понятиями). Так что бесконечно разумный математик должен быть способен вывести все древо теорий на рис. 10.5 лишь из этих уравнений, извлекая из них свойства физической реальности, которую они описывают, свойства ее обитателей, их восприятие мира и даже слова, которые они придумывают. Эта чисто математическая «теория всего» потенциально может оказаться достаточно простой для описания с помощью уравнений, которые уместятся на футболке.
Все это неуклонно ведет нас к вопросу: действительно ли можно найти такое описание внешней реальности, в котором не было бы никакого «багажа»? Если да, то описание объектов нашей внешней реальности и взаимосвязей между ними было бы совершенно абстрактным, а любые слова или символы стали бы не более чем метками без какого-либо априорно подразумеваемого смысла. Свойства же всех таких сущностей исчерпывались бы их связями между собой.
Математические структуры
Для ответа на этот вопрос необходимо присмотреться к математике. Для современного логика математическая структура — это в точности следующее: набор абстрактных сущностей с отношениями между ними. Возьмем, например, целые числа или геометрические объекты, вроде любимого пифагорейцами додекаэдра. Это совершенно не похоже на первоначальное восприятие математики большинством из нас — как садистской формы наказания или набора трюков для манипулирования числами. Математика, развиваясь, стала, подобно физике, задаваться более широкими вопросами.
Современная математика — это формальное исследование структур, которые можно определить чисто абстрактным способом, без человеческого «багажа». Считайте математические символы просто метками без внутреннего содержания. Неважно, пишете ли вы «два плюс два равно четыре», 2 + 2 = 4 или dos más dos es igual a cuatro. Обозначения, используемые для указания сущностей и их взаимосвязей, не имеют значения; целые числа обладают лишь теми свойствами, которые связывают их между собой. То есть мы не изобретаем математические структуры: мы открываем их, а изобретаем лишь обозначения для их описания. Если другая цивилизация заинтересуется трехмерными фигурами, состоящими лишь из одинаковых плоских граней, она может открыть пять форм, представленных на рис. 7.2, которые мы, земляне, называем платоновыми телами. Инопланетяне могут придумать для них собственные названия, но не смогут изобрести шестую фигуру — ее просто не существует.
Итак, два основных вывода:
Из гипотезы внешней реальности вытекает, что «теория всего» (полное описание нашей внешней физической реальности) не содержит «багажа».
Нечто, имеющее описание, совершенно свободное от «багажа», — это не что иное, как математическая структура.
Из этих тезисов, взятых вместе, вытекает гипотеза математической Вселенной, то есть утверждение о том, что внешняя физическая реальность, описываемая посредством «теории всего», является математической структурой 5 . Итак, если вы верите во внешнюю реальность, независимую от людей, то вы должны поверить и в то, что наша физическая реальность является математической структурой. Ничто больше не имеет свободного от «багажа» описания. Иными словами, мы живем в гигантском математическом объекте — гораздо более сложном, чем додекаэдр, и, вероятно, даже гораздо более сложном, чем объекты с пугающими названиями вроде многообразий Калаби — Яу, тензорных расслоений или гильбертовых пространств, которые появляются в передовых современных физических теориях. Все в нашем мире чисто математическое — включая нас самих.
1. Я переключился с коллекционирования марок на собирание хороших вопросов, ответом на которые служит число 42. Вот мои любимые на сегодня: 1. На какой широте была написана эта книга? 2. Каков радиус радуги в градусах? 3. Какой наибольший процент окружающего газа может проглотить черная дыра? «Кормление» черной дыры оказывается очень похожим на кормление младенца: большая часть вещества улетает прочь с огромной скоростью. Черные дыры способны проглотить не более 1 − 1/√3 ≈ 42% окружающего их газа.
2. В действительности, если вы предотвратите столкновение баскетбольного мяча на рис. 10.2 с землей, сжав всю нашу планету в черную дыру, расположенную в ее центре, то параболическая часть траектории мяча останется неизменной и продолжится, образовав полный эллипс вокруг черной дыры.
3. Как данное отношение удалось измерить точнее, чем две массы по отдельности? Ошибки этих двух измерений очень тесно взаимосвязаны (коррелированы).
4. Похожими ощущениями делится Роджер Пенроуз в книге «Путь к реальности».
5. Философ Джон Уорролл предложил термин «структурный реализм» в качестве компромисса между научным реализмом и антиреализмом. Грубо говоря, фундаментальная природа реальности корректно описывается только математическим или структурным содержанием научных теорий. Данный термин различными способами интерпретировался и уточнялся многими философами науки, а согласно Гордону Маккейбу, для моей гипотезы о том, что физическая Вселенная изоморфна математической структуре, следует использовать термин «универсальный структурный реализм».