Меню

Светофильтры для наблюдения солнца

Фильтры для телескопа: характеристики и особенности выбора

— by Mike Greenham

В наши дни звездное небо перестает быть тайной за семью печатями – телескопы стали доступны не только профессиональным исследователям, но и тем, кто просто интересуется тайнами космоса и ценит его фантастическую красоту.

— by Lincoln Harrison

Для современных любительских телескопов выпускается множество дополнительных устройств и аксессуаров, которые повышают удобство и позволяют настроить конструкцию под собственные интересы и нужды. Один из популярных инструментов для наблюдения за небом ‒ фильтр. Что он собой представляет?

Светофильтр ‒ это круглая насадка, которая, как правило, накручивается на окуляр телескопа (его нижнюю часть) и предназначается для получения изображения с большей четкостью и качеством. Фильтры используют для того, чтобы усилить на изучаемых объектах те части, которые интересуют исследователя (пояса планет, линии в туманностях и так далее). Основной принцип в работе фильтра – отсечение световых волн определенной длины (и цветов), чтобы оставшиеся были выделены лучше.

Величина фильтра должна соответствовать окуляру, с которым предполагается работать. Эти аксессуары позволяют решить множество специфических проблем, мешающих наблюдателю: засветка звездного неба в городе (уличными фонарями и иллюминацией), сливание близких по оттенку областей на поверхностях планет (фильтр повышает контрастность, разделяя цвета), размытие границ между участками на планетах, возмущения, присущие атмосфере Земли и так далее. Без фильтра многие интересные объекты «засветятся» и окажутся недоступными для рассмотрения.

Существует два основных типа фильтров:

  • солнечные, лунные и цветные планетарные – для наблюдения за объектами, которые находятся сравнительно недалеко;
  • дипскайные (deep sky) и подобные им ‒ для изучения объектов в определенных спектральных диапазонах, которые находятся глубоко в космосе, например, туманностей.

Разновидности планетарных светофильтров

Фильтры, с помощью которых облегчается изучение Солнца, а также Луны и других спутников, звезд и планет, достаточно сильно отличаются между собой.

Для наблюдения за поверхностью ближайшей к нам звезды, за пятнами на ней, факелами, грануляцией – предназначены солнечные фильтры. Они ослабляют слепящий свет Солнца в несколько тысяч раз, т.е. играют роль защитного устройства и иногда называются черными. Конструкция из стекла или синтетических пленок покрывается тонким металлическим слоем и отсекает более 99% солнечного света. При этом в качественных фильтрах яркость равномерна, точность поддерживается на высоком уровне, а световой баланс ‒ верный.

Лунные (серые) светофильтры улучшают качество и четкость изображения. Вкручиваются в окуляр, с их помощью блокируют яркий лунный свет (от 18 до 80%), позволяют разглядеть множество мельчайших деталей на поверхности земного спутника, особенно те, где слабая контрастность.

Кроме стандартных нейтрально-серых разновидностей можно использовать поляризационные ‒ составные фильтры из полароидных стекол, позволяющие изменять уровень светопропускания и уменьшающие яркость Луны в разных ее фазах.

Цветные фильтры, как правило, продаются в наборах (вместе с солнечными и лунными). Они предназначены для изучения планет и решения конкретных задач. Самые качественные модели позволяют, например, хорошо рассмотреть отдельные мелкие особенности планетарных дисков или хвосты комет, усиливают контрастность, которая делает возможным изучение рельефа планет. Пропуская лучи света только определенной волны, они служат различным целям:

  • через зеленые фильтры хорошо виден Марс, полярные области на Сатурне и Большое Красное Пятно на Юпитере;

  • красный фильтр позволяет наблюдать днем Меркурий и другие планеты и рассматривать моря Марса, повышает контрастность Луны;

  • оранжевые фильтры, нейтрализующие сине-зеленую часть спектра, подходят для изучения Юпитера, Сатурна и закатных наблюдений;
  • желтый фильтр улучшает видимость поверхности и колец Сатурна;

  • фиолетовым можно уменьшить сияние Венеры и т.д.

Фильтры легко комбинировать друг с другом ‒ стандартно в наборах можно встретить красный, оранжевый, желтый, зеленый и синий фильтры.

Фильтры, полезные для наблюдения слабосветящихся объектов (Deep Sky Filtr)

Чтобы рассмотреть слаборазличимые, находящиеся очень далеко от нас галактики, скопления звездных тел и туманности, нужны специальные фильтры. Например, противозасветный, широкополосный, блокирующий фонарный свет (натриевый, ртутный). Пропуская свойственное туманностям излучение (диапазон 430-550 нм) такие модели делают видимыми даже те объекты, которые незаметны на небе.

Более популярными считают узкополосные фильтры (480-520 нм) ‒ например, как OrionUltraBlock. Эти фильтры используются, в основном, для планетарных, различных эмиссионных туманностей, существенно улучшая контрастность, а галактики через них просматриваются не очень хорошо. Такие фильтры подавляют освещение от флуоресцентных ламп и часто маркируются UHC.

Последний вид дипскайных фильтров ‒ линейные (монохроматические), помеченные OIII (ионизированный дважды кислород, подходят для изучения планетарных туманностей) и Hβ (выделяют свечение в зелено-голубом спектре, например, в Конской Голове ‒ слабой туманности эмиссионного типа).

Отдельно можно выделить специализированные кометные фильтры, которые отделяют специфический свет соединений (например, следов цианида).

— Комета Исон. Глобальная аномалия

Эти аксессуары, несмотря на кажущуюся необязательность, существенно расширяют возможности телескопа. Наблюдая звездное небо через фильтр, можно увидеть много интересного и рассмотреть те подробности, которые ранее можно было увидеть только в иллюстрированных атласах или учебниках астрономии.

Возможность самостоятельного подбора фильтров и изучения с их помощью специфических нюансов существенно расширяет кругозор и делает даже начинающих любителей гораздо ближе к профессиональному изучению тайн космоса и мироздания.

Источник

Светофильтры для наблюдения солнца

Универсальные. Окуляры для визуальных наблюдений. Совместимы с телескопами всех типов.

Широкоугольныe. Окуляры с видимым полем зрения свыше 55°.

С большим выносом выходного зрачка. Модели с большим выносом выходного зрачка. Позволяют вести наблюдения в очках.

Окуляры для микроскопов

Окуляры для микроскопов. Стеклянная оптика высокой прозрачности.

Объективы для микроскопов

Объективы для микроскопов. Большой выбор увеличений и оптических схем.

Камеры для телескопов

Levenhuk T PLUS – обновленная линейка цифровых камер с матрицами от 1,3 до 8 Мпикс. Камеры имеют высокую светочувствительность. Серия подойдет и любителям, и профессионалам.

Камеры для микроскопов

Цифровые камеры для микрофотографии. Матрицы от 0,3 до 14 Мпикс.

Читайте также:  Солнце с собой роддом

Levenhuk M BASE – обновленная линейка цифровых камер для начинающих микробиологов. В ассортименте представлены камеры с матрицами от 0,3 до 5 Мпикс. Они станут отличным выбором для хобби или учебы.

Levenhuk M PLUS – цифровые камеры продвинутого уровня с матрицами от 8 до 14 Мпикс. Серия ориентирована на профессионалов и требовательных любителей микрофотографии. В комплект поставки включены адаптеры для окулярных трубок разных диаметров.

Levenhuk MED – серия высококачественных камер с ЖК-экранами. Работают на базе Android, идут с предустановленной программой для обработки изображений, измерений образцов и анализа частиц.

Фильтры

Лунные и планетные. Светофильтры для наблюдения Луны и планет Солнечной системы.

Солнечные. Фильтры для безопасного наблюдения Солнца. Позволяют избежать повреждений зрения.

Микропрепараты и наборы для опытов

Наборы готовых микропрепаратов, предметные и покровные стекла.

Книги, карты и постеры

Обучающие книги, карты звездного неба и постеры.

Штативы

Легкие и прочные складные штативы для оптической техники с креплением 1/4″. Совместимы с приборами любых марок.

Средства для очистки оптики

Специализированные средства для очистки оптики от всех видов загрязнений.

Сумки для телескопов

Маленькие. Сумки для хранения и переноски телескопов с длиной трубы до 76 см.

Большие. Сумки для хранения и транспортировки телескопов с длиной трубы до 102 см.

Прочие аксессуары

Широкий ассортимент аксессуаров для оптики.

Источник

Солнечный фильтр Thousand Oaks type 2+ Glass #4250

Бытует мнение, что заниматься любительской астрономией возможно исключительно в тёмное время суток, поскольку традиционные объекты интереса астрономов-любителей днём не видны. Но есть ведь ещё и Солнце! Тем более, что Солнце на самом деле — одно из самых переменчивых небесных тел, и на его поверхности происходит немало такого, что доступно даже самым скромным любительским телескопам.

Однако просто так подглядывать в телескоп за тайной жизнью главного небесного светила не получится: прежде, чем прикладываться к окуляру, нужно ослабить поток видимого света в сто тысяч раз и, сверх того, обрезать ультрафиолетовую и инфракрасную составляющую солнечного света. Именно это и делает полноапертурный солнечный фильтр Thousand Oaks Glass 2+, которому суждено было стать главным героем моего сегодняшнего обзора. И, сообщу заранее, что обозреваемый фильтр блестяще оправдал возлагавшиеся на него надежды, позволив мне предаваться астрономическим наблюдениям не только под покровом ночи, но и при свете дня!

Бородатый анекдот гласит: «посмотреть в телескоп на Солнце можно только два раза: левым глазом и правым». Примерно то же самое написано в инструкциях любительских телескопов — «не направляйте телескоп на Солнце». И я бы настоятельно рекомендовал не проверять правдивость этого предупреждения, а поверить инструкции на слово, благо всякий, кому доводилось при помощи лупы выжигать на заборе незамысловатые слова и выражения, с лёгкостью догадается, что способны сотворить с глазом сфокусированные солнечные лучи.

Однако нет в мире силы более неукротимой, чем человеческое любопытство. И потому с самых древних времён лучшие умы человечества бились над вопросом, как бы разглядеть во всех подробностях поверхность солнечного диска и не поплатиться зрением за свои вуайеристские наклонности. Пытаясь ослабить нестерпимо яркий свет Солнца, люди древности смотрели на дневное светило сквозь тонкие пластинки слюды и закопчённые стёкла; в более близкие к нам времена Гершель ради той же цели изобрёл хитрую комбинацию из двух стеклянных призм, а новейшая история добавила в этот список засвеченную фотоплёнку, фильтры от сварочных масок и, конечно же, дискеты. Как-то раз, за неимением лучшего, мне и самому довелось самолично вырезать фильтр для съёмки прохождения Венеры по диску Солнца из антикварной восьмидюймовой дискеты «ИЗОТ».

Однако всё это для серьёзных астрономических наблюдений, конечно же, не подходит. За исключением, разве что, «клина Гершеля», который в современном исполнении продаётся буквально на каждом углу за скромные шестьсот с лишним условных единиц. Однако если вы не готовы расстаться с означенной суммой, не беда, ведь можно по старинке взять и установить перед объективом телескопа плотный светофильтр. Тем более, что уже нет нужды коптить стёкла и потрошить сварочные маски, ибо современная промышленность выпускает солнечные фильтры в широком ассортименте, на любой вкус и кошелёк.

Плёночные фильтры — самые дешёвые. Лист плёнки Baader Astrosolar формата А4 стоит приблизительно 20 долларов, а для изготовления простейшего фильтра на бинокль, телескоп или подзорную трубу потребуется лишь плотная бумага, ножницы и синяя изолента. Если нет синей изоленты, сойдёт красная. Можно использовать даже матерчатую чёрную. А на самый крайний случай сгодится и презренный скотч.

Несколько дороже обойдётся фильтр из оптического пластика, который не столь нежен, как майларовая плёнка с напылением. Однако общественное мнение о пластиковых фильтрах неоднозначно: в интернете довольно много сообщений о том, что они снижают резкость изображения.

Но мне оба этих варианта пришлись не по вкусу; я искал чего-то надёжного, долговечного и монументального, с высочайшим оптическим качеством. И потому мой взгляд естественным образом устремился в сторону стеклянных фильтров, обладавших всеми этими свойствами в полной мере.

Почитав отзывы пользователей, я отметил, что меньше всего нареканий вызывает продукция фирмы Thousand Oaks Optical, как раз специализирующейся на выпуске всяческих светофильтров. Первое, что я сделал — отправился на сайт производителя (http://www.thousandoaksoptical.com) за более подробной информацией. Там я узнал, что Thousand Optics выпускает все три типа традиционных солнечных фильтров: плёночные, из окрашенного оптического пластика и стеклянные с напылением. Стеклянные фильтры, обозначенные как «GLASS 2+», пропускают одну тысячную процента солнечного света, имеют гарантийный срок эксплуатации 15 лет и, по словам, производителя являются самыми долговечными солнечными фильтрами на рынке.

Фильтры эти выпускаются в металлических оправах различного диаметра, от 50 до 485 миллиметров, что позволяет подобрать фильтр для практически любого оптического прибора, от скромного бинокля до весьма внушительного 400-миллиметрового телескопа. Основные характеристики фильтров, как то: чистая апертура, посадочный диаметр, модели телескопов, к которым данный фильтр заведомо подходит, цена и модель фильтра, также присутствуют на сайте и, ради удобства посетителя, сведены в таблицу, подлежащую тщательному и вдумчивому изучению.

Читайте также:  Восход солнца по зодиаку

Поскольку мой TS APO Triplet 80/480 в списке не значился, пришлось взяться за штангенциркуль и замерить диаметр фланца трубы, на который я собирался надевать фильтр. Я намерил 102 миллиметра, и, сверившись с таблицей, нашёл, что мне понадобится фильтр модели 4250 под посадку 108 миллиметров и ценой $79. Разница в целых 6 миллиметров меня, конечно, смутила, однако текст на сайте уверял, что к фильтру прилагается фетровая лента на клейкой основе, при помощи которой несоответствие в диаметрах можно устранить.

Заказать фильтр напрямую с сайта производителя не то, чтобы невозможно, но всё-таки затруднительно: доставка за пределы США у них возможна только по предварительной договорённости. Поэтому я с головой погрузился в поиски более простых вариантов приобретения желаемого и очень быстро вышел на американский же магазин Optcorp, пользующийся определённой известностью в кругу астрономов-любителей. Пару лет назад я уже заглядывал в этот магазин, однако тогда меня отпугнуло отсутствие дешёвых вариантов доставки. С тех пор многое изменилось к лучшему, в частности появился вариант доставки «First-Class Package International Service», который для данного конкретного фильтра стоил $24.48. Зарегистрировавшись на сайте, я оформил заказ, оплатив его через Paypal, после чего потянулись нескончаемые дни ожидания и предвкушения.

В пятнадцатый день с момента заказа я обнаружил в почтовом ящике долгожданное извещение, однако время было уже позднее, почтовое отделение успело закрыться, и получение долгожданного фильтра пришлось отложить до следующего дня.

Назавтра я поспешил на почту и получил небольшую коробку, в которой что-то подозрительно брякало. Подозревая самое худшее, я распотрошил посылку прямо в почтовом отделении, и обнаружил внутри неё ещё одну картонную коробку поменьше, обёрнутую несколькими слоями защитной пузырчатой плёнки. Когда я заглянул в меньшую коробку, у меня отлегло от сердца: в ней лежал тот самый фильтр, и на первый взгляд он выглядел целым и ничуть не пострадавшим при перевозке. Внешнюю коробку и плёнку я сразу же выбросил, а коробочку с фильтром спрятал под одежду и направился домой с целью пристального изучения её содержимого и как можно более быстрого его употребления.


Коробка с фильтром

Упаковка фильтра оказалась ничем не примечательна: коробка из гофрокартона размерами 142×135×55мм с бумажной наклейкой, на которой отпечатаны цифры «4250 2+». Очевидно, что эти цифры означали модель фильтра (как вы помните, 4250) и материал «Glass 2+», то есть стекло с напылением. Фильтр лежал внутри коробки в простом полиэтиленовом пакетике, без какой-либо дополнительной защиты, причём разница в размерах коробки и фильтра была такова, что фильтр мог свободно скользить по дну коробки. В общем, упаковку я бы охарактеризовал как чересчур скромную и не слишком практичную; для хранения фильтра я бы предпочёл жёсткий пластиковый контейнер вроде тех, в которых продаются фотографические светофильтры.


Содержимое коробки

Сам фильтр представлял собой тонкое стекло с зеркальными поверхностями, заключённое в круглую оправу из белого металла. Высота оправы фильтра 30 миллиметров, наружный диаметр 110,5мм, толщина металла 0,5мм. Обработка оправы довольно грубая, на поверхности заметны следы, оставленные инструментом. Логотип производителя отпечатан на блестящей плёнке наклеенной на оправу. Снаружи стекло фильтра удерживается металлическими бортиками, изнутри — вклеенным кольцом из чёрного пластика. Стекло в оправе закреплено надёжно, не болтается и при тряске звуков не издаёт. Также отмечу, что фильтр очень лёгкий и при установке на короткий рефрактор балансировку не нарушает.


Полноапертурный солнечный фильтр Thousand Oaks Glass 2+, вид сверху

Рядом с фильтром лежала полоска чёрного фетра на клейкой основе. Длина полоски 350, ширина — 20 миллиметров. Поскольку внутренняя окружность фильтра приблизительно равна 340 миллиметрам, по длине этой полоски должно хватить с запасом.

На дне коробки, под фильтром и фетровой полоской, нашлась инструкция на английском языке, отпечатанная на одном листе формата А4. Несмотря на краткость и отсутствие полиграфических изысков, вся необходимая информация о реквизитах производителя, характеристиках фильтра и правилах обращения с ним в руководстве присутствовала. Согласно информации от производителя, фильтр имеет полосу пропускания от 580 до 630 нанометров, то есть через него проходит далеко не весь видимый спектр излучений, а лишь жёлтые и оранжевые лучи. Вредное для глаз инфракрасное и ультрафиолетовое излучение фильтр блокирует, что позволяет без опасений использовать его для визуальных наблюдений.

Первое, что инструкция рекомендовала сделать прежде, чем приступать к наблюдениям — взять фильтр, внимательно посмотреть сквозь него на включенную лампочку и поискать точечные дефекты покрытия, которые будут видны в виде ярких точек. Согласно инструкции, присутствие некоторого количество таких дефектов допускается и повредить зрению они не могут. Тем не менее, точечные дефекты способны снизить контраст изображения, и, если на фильтре таковые обнаружатся, их рекомендуется закрасить чёрным маркером. Мне, однако, повезло: глядя через фильтр на лампы включённой люстры, я не обнаружил ни одной светящейся точки, и закрашивать ничего не понадобилось.

Затем я взял фетровую ленту, снял защитную бумагу с клейкого слоя и аккуратно наклеил фетр изнутри на оправу фильтра.


Полноапертурный солнечный фильтр Thousand Oaks Glass 2+ изнутри

Примерка показала, что фильтр надевается на бленду трубы с небольшим усилием и держится на своём месте вполне надёжно: комплектная фетровая лента благополучно заполнила зазор в 6 миллиметров. Однако если бы разница между внутренним диаметром оправы фильтра и внешним диаметром трубы оказалась совсем небольшой, скорее всего пришлось бы искать ленту потоньше.

Читайте также:  Жилой комплекс резиденция солнца


Фильтр, установленный на трубу телескопа

Поскольку утро выдалось ясным, я не стал откладывать испытания обновки в долгий ящик, и сразу же потащил телескоп на лоджию.

Как только дневное светило поднялось достаточно высоко над дальним лесом, я навёл на него телескоп и занялся поиском пятен на Солнце, как в прямом смысле, так и в переносном. Искать долго не пришлось, самый главный недостаток фильтра становится очевиден сразу же, как только солнечный диск оказывается в поле зрения телескопа. Все мы знаем, что видимая поверхность Солнца, в учёных кругах именуемая фотосферой, имеет жёлтый цвет. Однако, взглянув на Солнце через обозреваемый фильтр, я сразу же отметил, что Солнце приобрело цвет зрелого апельсина. Eсли вспомнить, какая у фильтра полоса пропускания, удивляться тут нечему, однако данный факт может сильно помешать при использовании некоторых узкополосных фильтров, например, Baader Solar Continuum, полоса пропускания которого приходится на зелёную часть спектра.

И всё-таки, что видно в телескоп на Солнце? Оказывается, не так уж мало: с первой же попытки я обнаружил два небольших пятна, соединённых длинной извилистой перемычкой из совсем мелких пятнышек. Увидеть больше не позволила атмосфера: наблюдения я начинал при сильной дымке, а заканчивал и вовсе при лёгкой облачности. Контраст изображения мне показался вполне приличным, а вот про резкость ничего вразумительного сказать было невозможно. Неделю спустя погодные условия оказались намного лучше, и вот тут уже фильтр показал всё, на что способен: в моменты успокоения атмосферы я уже не просто фиксировал факт наличия пятен на солнечном диске, но со всей отчётливостью наблюдал их во всех подробностях: сами пятна, окружающие их полутени с тонкой структурой, россыпи мелких пятнышек, окружающие более крупные, и даже факельные поля поблизости от края диска. И чем дольше я наблюдал Солнце, тем более убеждался, что наше самое главное светило живёт весьма активной и насыщенной жизнью: даже в течение дня солнечные пятна успевали изменить свою форму, число и расположение.

Конечно же, визуальными наблюдениями я не ограничился, и в первый же день попытался сфотографировать солнечный диск. В качестве фотокамеры я использовал беззеркалку Sony NEX-5, благодаря небольшому весу и габаритам отлично сочетающуюся с телескопом. Снимок вышел не слишком удачным, однако я проявил настойчивость, и уже через день получил более интересный результат:


Диск Солнца

Однако даже на этом фото Солнце оказалось не столь впечатляющим, как при визуальных наблюдениях; при увеличении в 87 раз глаз замечал гораздо больше деталей, чем можно найти на снимке. Причина тому — ограниченные возможности фотокамеры: на Sony NEX-5 диаметр солнечного диска на сенсоре составляет 2tg(30’/2)⋅480 ≈ 4,2 миллиметра или около 880 пикселей, чего, очевидно, недостаточно для получения высокой детализации. Здесь лучше подошла бы камера с более мелкой матрицей, что-нибудь из линейки Nikon 1 или даже Pentax Q, однако у меня в хозяйстве таковых не нашлось. Кроме того, солнечная активность сейчас находится в глубоком упадке, отчего солнечные пятна не поражают зрителя ни размером, ни количеством.

Упражняясь в фотосъёмке солнечного диска, я столкнулся со вторым недостатком фильтра, являвшимся прямым продолжением его достоинств. Как я уже говорил, фильтр в первую очередь предназначен для визуальных наблюдений и потому обеспечивает яркость, комфортную для глаза, однако недостаточную для астрофотографии. Когда я фотографировал солнечный диск при помощи NEX-5, экспотройка выглядела следующим образом: ISO 200, светосила 1:6, выдержка 1/320 секунды. Проблема здесь в выдержке: она, на мой взгляд, слишком длинная.

Раньше мне уже неоднократно доводилось снимать Солнце на Таир-3 и Canon 70-300L через фильтр Marumi ND100000, и при диафрагме 8 я использовал выдержки порядка 1/800 секунды. А это означает, что указанная производителем информация о плотности фильтра занижена, и на самом деле фильтр пропускает не 0.001% видимого света, а в два, а то и три раза меньше.

Может показаться, что 1/320 и 1/800 секунды — отрезки времени настолько короткие, что разницей между ними можно пренебречь, однако в нашем случае это далеко не так. При съёмке длиннофокусной оптикой главным ограничителем качества становятся колебания атмосферы, которые за одну триста двадцатую долю секунды размывают изображение гораздо сильнее, чем за одну восьмисотую. Если же вместо достаточно светосильного апохромата взять классический рефрактор или зеркально-линзовый телескоп со светосилой 1:10 и ниже, необходимые выдержки станут ещё длиннее, а качественная фотосъёмка солнечного диска — ещё более затруднительной.

Движимый любопытством, в своих фотографических изысканиях я не ограничился одним лишь Солнцем и попробовал применить фильтр для съёмки наземных объектов. Однако первая же попытка убедила меня в полной бесперспективности этой затеи: мало того, что весь кадр был окрашен в оранжевые тона, так ещё и край кадра был засвечен отражением от зеркальной поверхности фильтра. Получившийся ужас можете оценить сами:


Попытка съёмки наземных объектов. ISO 200, светосила 1:6, выдержка 15 секунд

Впрочем, если вас интересуют не пейзажи, а съёмка спиралей в лампах накаливания и дуг электросварки, в этих экзотических областях фотографии обозреваемый фильтр может оказаться небесполезным.

Если же применять фильтр по его прямому назначению, то есть для визуальных наблюдений Солнца, то Thousand Oaks Glass 2+ окажется безусловно хорош и наверняка порадует своего владельца не меньше, чем он сейчас радует меня. А я приобретённым фильтром доволен целиком и полностью.

  • Прочность и долговечность
  • Безопасность для зрения
  • Резкое и контрастное изображение при визуальных наблюдениях

Недостатки

  • Минималистичная упаковка, не гарантирующая полную защиту фильтра при транспортировке
  • Цветопередача, далёкая от нейтральной
  • Для астрофотографии оптическая плотность фильтра избыточна
  • Практически полная непригодность для съёмки наземных объектов

Источник

Adblock
detector