Меню

Светимость новых звезд светимость солнца

Новые звезды и их классификации

На самом деле, новые звезды это не те, которые только что родились или возникли. Хотя многие, кто мало знаком с нашим космосом, сначала именно так и думают.
Собственно говоря, в астрономии термин новая звезда означает звезду, у которой резко увеличилась светимость и блеск. Причем повышение показателей этих характеристик более 100 раз для излучения энергии, а для яркости примерно на 12 звёздных величин.
Что интересно, понятие новая звезда появилось благодаря астроному Тихо Браге. Он, как оказалось, наблюдал сверхновую SN 1572 (созвездие Кассиопея) и описал её как новое светило.

Сверхновая SN 1572

Между прочим, всё новые звезды представляют собой тесные двойные системы. Как оказалось, образуются они обязательно из белого карлика и светила главной последовательности или красного гиганта. Также установили, что карликовый компаньон получает от соседнего его вещество, которое образует аккреционный диск.

Аккреционный диск черной дыры

Аккреционный диск — структура, можно сказать, область, образовавшаяся из вещества, которое вращается вокруг центрального тела.

Чем можно объяснить изменение яркости новых звезд

Как уже отмечалось, белый карлик получает вещество от своего компаньона. В результате повышения количества вещества, его водородный слой сжимается и, соответственно, разогревается. Что ведёт к увеличению температуры и нагреву гелия. Так как этот процесс начинается резко и быстро, происходит вспышка новой звезды. При этом поверхность, которая проводит энергию, также увеличивается. В итоге повышается яркость и блеск тела.

Сверхновая SN 1006

Как классифицируют новые звезды

Можно сказать, они имеют два вида номенклатуры, то есть названий. Поскольку до 1925 года их имена отражали буквенный индекс порядка открытия в определённом созвездии, а также название этого созвездия.
А вот с 1925 года их наименование включает в себя индекс V, порядковый номер открытия в созвездии и его название.
Правда, бывают случаи обнаружения звёздных тел, которые предположительно являются новыми. Но до тех пор, пока это не подтвердится, их обозначение содержит индекс PNV и их небесные координаты.
Проще говоря, данный класс светил называют также, как переменный тип объектов.

По данным учёных, новые звезды делят на два вида:

  • переменные взрывные;
  • классические.

Переменные взрывные новые звезды

По сути, это светила, которые вспыхивают с определённой периодичностью. То есть носят повторяющийся характер.
Что удивительно, во время увеличения блеска до максимума на их оптической полосе фиксируется фиолетовый цвет.

Классические новые звезды

В отличие от предыдущих, их вспышки не повторяются. А амплитуда блеска чётче и значение максимум достигается намного быстрее. Только представьте, что они способны за несколько часов увеличиться до 12 звёздной величины.
Вдобавок, классические разделяют по периодам между вспышками. Итак, они могут быть:

  • быстрыми,
  • медленными,
  • предельно медленными,
  • повторными новыми.

Между прочим, повторные очень интересный класс тел. Для них характерны мощные вспышки с временным промежутком до нескольких десятков лет. Причем блеск увеличивается приблизительно на 10 звёздных величин.

Новая GK Пepceя

В действительности, образование и вспышки новых звезд люди наблюдают более тысячелетия. Однако за последние сто лет их обнаруживают постоянно. Сейчас за год могут открыть около десяти подобных объектов.
Вероятно, это связано с тем, что формируется новые звезды в двойных системах, которых очень много в нашей Вселенной.
На самом деле, изучение таких светил продолжается до сих пор. Более того, существует астрономический проект «E-Nova Project». Он нацелен на исследованию того, как вспыхивают новые звезды. Помимо этого, простые любители-астрономы с удовольствием наблюдают за ними.

Источник

Журнал «Все о Космосе»

Новая звезда

В отличие от сверхновых, новые звезды выживают, процесс взрывов может повторяться в течение нескольких лет, а в некоторых случаях – десятков тысяч лет.

10 3 —10 6 раз (в среднем увеличение светимости — в

10 4 , блеска — на

12 звёздных величин).

Изменение блеска новой Лебедя 1975 г. (V1500 Cyg)

Аккреция на белый карлик в тесной двойной системе (в представлении художника)

Аккрецируемый газ накапливается на поверхности белого карлика, образуя обогащённый водородом слой, из-за крайне высокого ускорения свободного падения на поверхности белого карлика (

Читайте также:  Набор косметики принцесса восходящего солнца

106 м/с²) этот слой находится в вырожденном состоянии и дополнительно разогревается потоком из аккреционного диска, скорость падения которого составляет

1000 км/с. По мере накопления водорода в поверхностном слое и повышения его температуры в обогащённом водородом слое начинают идти термоядерные реакции CNO-цикла, этому способствует и проникновение в вырожденный поверхностный слой углерода из нижележащих слоёв белого карлика. В невырожденных условиях энерговыделение идущих в веществе термоядерных реакций, приводящее к повышению температуры, приводит к росту давления и, соответственно, расширению, понижению плотности и снижению скорости ядерных реакций (пропорциональной плотности и температуре) — то есть установлению саморегулирующегося гидростатического равновесия, как это происходит в недрах звёзд главной последовательности. Однако особенностью нерелятивистского вырожденного газа является крайне слабая зависимость давления от температуры. Результатом является взрывоподобное ускорение реакций термоядерного синтеза в богатой водородом оболочке, температура резко возрастает до снятия вырождения при данной плотности, и формируется ударная волна, сбрасывающая верхний слой водородной оболочки белого карлика в окружающее пространство. Такое взрывное нарастание скорости термоядерных реакций в вырожденном звёздном веществе является достаточно типичным явлением: сходную природу имеют гелиевые вспышки красных гигантов и углеродная детонация в вырожденных ядрах массивных звёзд и массивных белых карликов при превышении предела Чандрасекара.

Зависимость давления вырожденного газа от температуры: вспышка новой (реакции CNO-цикла) развивается на горизонтальном участке

При наблюдении за сверхновой SN 1572 в созвездии Кассиопея астроном Тихо Браге отразил это в своих записях как о новой звезде (от лат. de stella nova), дав тем самым рождение термину новая. В своих работах он утверждал, что так как движение близких объектов должно быть заметно относительно неподвижных звёзд, то новая должна находиться очень далеко.

За 2200 лет (532 г. до н. э. — 1690 г. н. э.) в китайских и японских летописях было выявлено около 90 вспышек новых. После изобретения телескопа (1609 г.) и до вспышки Эта Киля (1843 г.) европейские учёные заметили всего 5 вспышек новых звезд. Со второй половины XIX века вспышки новых обычно открывали ежегодно. Уильям Хаггинс в 1866 году впервые выполнил спектроскопические наблюдения новой звезды (новой Северной Короны 1866) и обнаружил наличие вокруг неё газовой оболочки, светящейся в линиях водорода. В XX веке было только 5 лет, в течение которых не было замечено ни одной вспышки новых: 1908, 1911, 1923, 1965 и 1966 года. В XXI веке традиционно за год открывается до 10 вспышек новых. Блеск большинства новых превышает 12 зв. вел., но редко оказывается выше 6 зв. вел. В данный момент профессиональными астрономами реализуется проект «E-Nova Project» по всеволновому исследованию вспышек новых звезд. Любители астрономии также активно наблюдают этот тип объектов.

Новые имеют хорошие шансы быть использованными в качестве стандартных свеч. Пусть, к примеру, распределение её абсолютной звёздной величины бимодально, с основной вершиной в −7,5 и меньшей в −8,8. Кроме того, абсолютная звёздная величина новой остаётся приблизительно одинаковой (−5,5) около 15 дней после взрыва. Определение расстояний галактик и скоплений галактик при помощи новых дают такую же точность, как и при использовании цефеид.

До 1925 г. новые звёзды именовались в соответствии с номенклатурой переменных звёзд Фридриха Аргеландера 1862 года, то есть имя состояло из буквенного индекса, соответствующего по порядку их открытия в созвездии, и названия созвездия. Так, например, в этой номенклатуре новая 1901 года в созвездии Персея обозначалась как GK Per. С 1925 года новые именуются как переменные звёзды, то есть индексом V, порядковым номером открытия в созвездии и названием созвездия: так, например, новая 1975 года в созвездии Лебедя обозначается как V1500 Cyg.

Неподтверждённые новые обозначают буквами PNV (англ. Possible Nova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Новые звёзды являются подклассом катаклизмических переменных звёзд (англ. Cataclysmic Variable, аббр. CV). Выделяют классические новые с большим периодом между вспышками и повторные новые с относительно частой повторяемостью вспышек.

Читайте также:  Сценарий как украли солнце

Na — быстрые новые, англ. rapid novae, представитель GK Per
Nb — медленные новые, англ. slow novae
Nc — предельно медленные новые, англ. extremely slow novae, представитель RT Ser
NR — повторные новые, англ. recurrent novae.

Повторные новые — класс новых звёзд, которые наблюдались в нескольких мощных вспышках c интервалом между вспышками в несколько десятков лет, при которых яркость звезды увеличивается в среднем на 10m

DM Лиры (карликовая новая)
A0620-00 (первая открытая рентгеновская новая, возможно повторная)

Источник

НОВАЯ ЗВЕЗДА

НОВАЯ ЗВЕЗДА, переменная звезда, демонстрирующая вспышку или очень быстрое усиление блеска, за которым следует его медленное ослабление вплоть до полного угасания. Новые звезды относятся к большому классу звезд, называемых катаклизмическими переменными. Древние астрономы использовали термин «новые» для обозначения небесных объектов, которые до вспышки не были видны невооруженным глазом. Все вспыхнувшие звезды, как «новые», так и «сверхновые», они называли «новыми звездами» (nova stella – лат.). Во время вспышки сверхновой вся термоядерная энергия звезды внезапно высвобождается. Звезда, испытавшая взрыв как сверхновая, полностью меняется: от нее остается либо черная дыра, либо нейтронная звезда, либо вообще ничего. В последнем случае звезда буквально разлетается и прекращает существование.

Вспышка.

Вспышка новой – одно из наиболее драматических событий в астрономии. Новая, вспыхнувшая в 1975 в созвездии Лебедя, почти достигла яркости Денеба (ярчайшей звезды в Лебеде) и сохраняла такую яркость около трех суток. Хотя блеск большинства новых усиливается примерно в миллион раз, блеск этого необычного объекта усилился в 100 млн. раз. Новые достигают максимального блеска за несколько часов и находятся в стадии максимума различное время. «Быстрые» новые сохраняют максимальный блеск от нескольких часов до 1–2 сут, а затем быстро ослабевают. «Медленные» новые не так быстро усиливают свой блеск, дольше находятся в максимуме и гораздо медленнее гаснут. Например, Новая Геркулеса 1934 находилась в максимуме блеска почти три месяца, затем быстро ослабела в течение месяца, после чего немного усилила свой блеск и продолжила медленное ослабление в течение нескольких лет. Другая очень медленная новая вспыхнула в Дельфине в 1967 и находилась в стадии максимального блеска почти год. Быстрое ослабление и последующее небольшое усиление блеска Новой Геркулеса 1934 и других подобных новых говорит об образовании малых твердых частичек в веществе, выброшенном звездой при взрыве. Эти частички конденсируются в микроскопические углеродные зернышки, поглощающие свет.

Эволюция спектра новой звезды во время вспышки сложна и интересна (см. также СПЕКТР). Спектры, полученные в период усиления блеска, показывают, что расширяющиеся слои газа сохраняют высокую температуру (40 000–50 000 К). В момент достижения максимума блеска температура газа падает до 10 000 К, а спектр лишь немного отличается от спектров обычных звезд (см. также ЗВЕЗДЫ). У быстрых новых линии поглощения углерода, азота и кислорода довольно сильные и вначале смещены только в коротковолновую область. Из этого следует, что наблюдаемое вещество движется в направлении Земли со скоростью несколько сотен и тысяч километров в секунду. Сразу после максимума блеска расширяющееся облако газа становится прозрачным, позволяя астрономам видеть не только приближающиеся, но и удаляющиеся его части: облако расширяется во все стороны от центрального объекта. В спектре появляются широкие и яркие эмиссионные линии водорода и других элементов. Анализ спектров показывает, что примерно 0,001% массы звезды (что составляет от 10 до 100 масс Земли) выбрасывается в пространство и что состав вещества сильно отличается от того, который наблюдается в атмосфере Солнца. По отношению к содержанию водорода отмечается очень много гелия, а также углерода, азота, кислорода и иногда неона. Существует корреляция между скоростью вспышки и степенью избытка этих элементов: быстрые новые выбрасывают больше углерода, азота и кислорода, чем медленные. Через несколько лет на месте вспышки новой можно наблюдать расширяющееся облако. Полная энергия такой вспышки (т.е. энергия излучения плюс кинетическая энергия выброшенной оболочки), равна энергии термоядерного синтеза гелия из водорода с массой, равной массе Земли. См. также ЯДЕРНЫЙ СИНТЕЗ.

Читайте также:  Ты слышишь как дождь по крыше по тебе плачет солнце

Системы новых.

Наблюдения при помощи больших телескопов показали, что катаклизмические переменные состоят из двух звезд – главной звезды и спутника, обращающихся вокруг общего центра масс под действием взаимного притяжения. Обычно спутником служит звезда размером с Солнце. Главной звездой является маленький и горячий белый карлик: его масса близка к солнечной, а радиус примерно равен земному. Это означает, что его плотность очень велика – в несколько миллионов раз выше плотности воды (наперсток такого вещества весит более тонны). Белые карлики являются последней стадией эволюции звезд типа Солнца. Наличие белого карлика в двойной системе указывает на ее большой возраст (один из компонентов системы имел достаточно времени, чтобы дойти до конца своей эволюции).

Эволюция звезд типа Солнца начинается с медленного превращения водорода в гелий в ядре звезды. Примерно через 10 млрд. лет, когда ядро становится полностью гелиевым, внешние слои звезды расширяются, и она превращается в красный гигант (Солнце на этой стадии эволюции увеличится так, что выйдет за пределы орбиты Земли). В ходе дальнейшей эволюции гелий превращается в углерод, кислород и, возможно, неон. Ядро звезды становится все более плотным, а внешние слои расширяются все больше, пока не рассеются в пространстве. В этот момент вокруг звезды образуется газовая оболочка, расширяющаяся в пространство и называемая «планетарной туманностью». В ядре звезды, ставшем белым карликом, термоядерные реакции больше не происходят.

Подобный ход эволюции должна была бы пройти и главная звезда в системе катаклизмической переменной. Но, поскольку она обращается вокруг другой звезды, ее размер не может превысить расстояния до звезды-спутника. Когда внешние слои главной звезды расширяются, спутник попадает в них, тормозится, и две звезды начинают медленно по спирали сближаться. Это продолжается до тех пор, пока главная звезда не сбросит оболочку и не станет белым карликом. Астрономам удалось обнаружить короткопериодические затменные двойные звезды, окруженные такими расширяющимися облаками газа.

В конце этой стадии эволюции спутник еще не изменяется, а главная звезда, сбросив оболочку, медленно остывает. Она состоит из углеродно-кислородного ядра, окруженного тонким слоем гелия. Продолжая эволюционировать, спутник в конце концов тоже достигает стадии расширения. Его внешние слои распухают до такой степени, что белый карлик начинает сдирать со спутника оболочку и притягивать ее к себе. Оседающий на его поверхность газ образует все более толстый слой, основание которого сжимается и нагревается, пока не достигнет температуры термоядерного возгорания. Поскольку падающее со спутника вещество в основном содержит водород, оболочка белого карлика становится готова к взрыву.

Причина вспышки.

После многих лет аккреции нижняя часть водородного слоя становится не только горячей и плотной, но и «вырожденной»; этот термин означает, что атомы и электроны в газе так сжаты, что ведут себя как в металле. Такой газ при нагревании не расширяется. Когда начинаются термоядерные реакции, газ быстро нагревается, и скорость реакций от этого возрастает – происходит взрыв.

Скорость и мощность взрыва зависят от химического состава оболочки. Если в ней преобладают водород и гелий, то взрыв происходит медленно. Но если в оболочке много углерода и кислорода, то реакция синтеза с участием водорода, углерода, азота и кислорода идет быстрее: углерод играет в ней роль катализатора. Чем больше углерода, тем интенсивнее и мощнее взрыв. Это теоретическое предсказание, сделанное в начале 1970-х годов, подтвердилось наблюдениями химического состава оболочек, сброшенных медленными и быстрыми новыми звездами.

Карликовые новые.

При вспышке карликовой новой ее светимость за несколько часов возрастает примерно в 100 раз и сохраняется в этом состоянии несколько суток. Причиной такой относительно слабой вспышки считается не термоядерный взрыв, а нерегулярность аккреции вещества нормальной звезды на белый карлик. Возможно, звезда теряет вещество порциями, а может быть, газ накапливается в аккреционном диске, а затем порциями попадает на поверхность белого карлика. Изучение таких вспышек позволяет понять детали процесса аккреции вещества.

Источник

Adblock
detector