Научные статьи о космосе
Еще первобытные люди приковывали свои взгляды на ночное небо, пытаясь выяснить, что за светящиеся точки на нем находятся. Некоторые думали, что на небе живут боги, другие считали, что в небесах обитают неизвестные человеку существа, да и до нынешнего времени в человеке не сложилось полное понимание того, что такое космос на самом деле.
Как правило, интересные факты о космосе всегда находятся в центре внимания, привлекая к себе множество читателей во всем мире. Загадки и тайны Вселенной не оставляют равнодушным практически никого из нас. Существуют ли внеземные цивилизации? Сколько времени необходимо затратить, чтобы добраться до ближайшей галактики? Почему сверкают звезды разными цветами?
Согласитесь, ответы на подобные вопросы хочется узнать каждому независимо от пола, возраста, социального статуса. Данный раздел нашего портала содержит интересные научные статьи о космосе, которые расширят Ваше воображение, погрузят в мир загадочного, таинственного, невообразимого.
Научные статьи о космосе от Kvant.Space
Современная наука, которая сформировалась в XX веке, развивалась очень динамично, преподнося новые невероятные открытия, начиная изобретением обычной батарейки и заканчивая высадкой человека на Луну. Однако все это было только началом, только каплей в океане знаний, которые ожидают человечество впереди. Что касается освоения космоса, то в XXI веке оно стало еще стремительнее. Изобретение сверхмощных телескопов предоставило человеку возможность увидеть другие галактики со звездами и планетными системами. Занавес тайны о происхождении Вселенной приоткрыли математики, физики, астрономы и другие научные деятели современности.
Загадки Вселенной, теория большого взрыва, существование внеземного разума – все это представляет интерес не только для специалистов, исследующих космическое пространство. Данная информация будет интересна каждому, поэтому портал Kvant.Space предоставляет Вашему вниманию научные статьи о космосе, включающие теории происхождения материи, описания космических тел, оценку расстояний в космическом пространстве и многое другое. Люди напрасно думают, что научные статьи пишутся учеными для своих коллег. В них содержится информация, которая расширяет наше мировоззрение. Научные статьи о космосе не бывают скучными, ведь это очень обширная тема, включающая массу интересных моментов.
Почему ночью влюбленные любят посидеть под звездным небом? Ответ прост – ночное небо не сравнимо ни с каким декором. В погоне за романтикой далеко ходить не нужно. Взгляните на небо в темное время суток. Звезды, которые светящимися горошинами рассыпаны на нем, так не похожи друг на друга. Разноцветное мерцание звезд, завораживающие яркие следы от падения метеоритов – неужели что-то может быть романтичней? Здорово было бы узнать больше обо всем этом. К сожалению, наше воображение не способно разгадать всех тайн космоса, это не под силу даже самым светлым «умам» мира. Но наука не стоит на месте. Изо дня в день делаются новые открытия космических объектов, подтверждаются и опровергаются различные гипотезы и теории. Научные статьи о космосе, опубликованные на Kvant.Space, написаны на основании работ известных ученых, которые полностью отдали себя раскрытию загадок Вселенной.
Запуск телескопа Хаббла на земную орбиту в 1990 году помог астрономам увидеть галактики, находящиеся на расстоянии миллиардов световых лет от Земли. Снимки, полученные этим мощнейшим телескопом современности, не только дают возможность увидеть космические объекты, но и проанализировать развитие Вселенной.
Как создаются научные статьи о космосе
Многочисленные известия из далеких миров предоставляют для нас ценнейшую информацию о Вселенной. Однако все это было бы только набором фактов, если бы человек не мог их анализировать, сопоставлять между собою, находить определенные связи и закономерности, умел мыслить, размышлять и делать выводы. Именно человеческий разум помог создать замечательные инструменты и приборы, которыми улавливается и расшифровывается информация из космоса. Но не все явления из окружающего мира можно наблюдать. Более того, не каждое событие в космосе, за которым мы наблюдаем, исходит из другого, уже известного нам. Таким образом, на помощь ученым приходит научная теория. Благодаря ее применению появляется возможность вскрыть зависимость между различными процессами и явлениями, восстановить недостающие звенья, предугадать новые факты, изучить такие задачи, которые нельзя решить одними только наблюдениями или измерениями. Именно использование теории указывает путь дальнейших исследований, ставит перед учеными первостепенные задачи, концентрируя их усилия на определенных направлениях, нацеливает на установление определенных фактов.
Существование теории без данных наблюдений и фактов невозможно. Без них она была бы только пустыми логическими упражнениями, решениями умозрительных задач, не содержащими в себе никаких ценных сведений об окружающем мире. Это был бы простой калейдоскоп без теоретического основания и без выяснения закономерностей, руководящих фактами, который был бы мало чем полезен исследователям Вселенной. Наблюдения вместе с теоретическими исследованиями – два брата-близнеца, которые не могут жить в современной науке один без второго.
По своему характеру теоретические исследования в современной астрономии весьма разнообразны. Здесь встречаются и статистические подсчеты, и математические выкладки, и смелые догадки наряду с оригинальными гипотезами.
На нашем портале Kvant.Space Вы можете встретить самые разные научные статьи о космосе. Вы узнаете гипотезы происхождения материи, встретите описание планет, галактик, звезд, туманностей и комет, ознакомитесь с работами ведущих астрофизиков и математиков мира, исследующих космическое пространство.
В основном научная статья пишется на основании проведенных наблюдений. Когда речь идет о наблюдении за космическими телами, стоит понимать, что улавливание световых космических лучей, поступающих из космоса, всего половина дела. Эти лучи еще необходимо зафиксировать. В течение долгих лет астрономы это делали очень примитивно: смотрели в окуляр телескопа, а далее просто перерисовывали увиденное и записывали результаты наблюдений.
Однако глазам человека свойственно поддаваться усталости. Несколько часов беспрерывного наблюдения заметно притупляют остроту зрения и снижают точность восприятия. Поэтому ученые-астрономы при проведении исследований вместо утомительных визуальных наблюдений используют метод фотографирования. Современные фотоаппараты позволяют автоматизировать процесс исследования космоса. Научные статьи о космосе, с которыми Вы можете ознакомиться в данном разделе нашего портала, подкрепляются настоящими фотографиями космических объектов.
Наука последнего времени действительно принесла нам множество гениальных открытий.
За каких-то несколько десятков лет мы изобрели мощные компьютеры и теперь можем работать с гигантскими объемами информации.
Благодаря изобретению сверхмощных двигателей человек сумел преодолеть силу земного притяжения и вырваться в космическое пространство. В 1961 году человек собственными глазами смог увидеть то, что Земля – это действительно шар. А до этого все было лишь на уровне предположений, гипотез и теорий. Ученые ломают голову, дабы найти своим теориям подтверждение. В космосе еще так много всего необъяснимого! Открываются новые закономерности, новые тела, которым даются свои названия. Далее, они становятся предметом дискуссий на собраниях ученых и научных конференциях. Вообще, тема «космос» – тяжелая для понимания. Ведь приходится говорить о тех объектах, которые находятся на огромном расстоянии. Если до Луны человек еще смог добраться и собрать образцы его поверхности, то другие небесные тела пока что недосягаемы. Поэтому их описание будет строиться только на материалах, полученных телескопом. Научные статьи о космосе полезны для людей любого возраста. Их интересно читать детям, которые способны мгновенно усваивать большие объемы информации. Они будут интересны также и взрослым независимо от их профессии. Прочитав такой текст, всегда есть о чем поразмышлять.
Сколько людей – столько и мнений. Когда читаешь гипотезу, ты можешь либо согласиться с ней, либо нет. В основном в статьях тематики космос нет достоверных данных. Выводы строятся только на рассуждениях ученых, занимающихся изучением того или иного явления. Непросто описывать то, что нельзя увидеть с близкого расстояния, нельзя ощупать и рассмотреть со всех сторон. В этом и заключается сложность работы астрофизиков. Оперируя одними только изображениями, они должны сделать вывод о расстоянии до космического тела, его температуре, физическом состоянии и множестве других факторов. Космос – это та научная тема, которая не имеет начала и конца. Ведь во Вселенной находится множество галактик, звезд, планет и туманностей, каждая из которых является предметом нового научного исследования. Вопрос только в том, насколько быстро человеку станут доступны технологии, способствующие добраться до этих объектов на небольшое расстояние. Сюжеты фантастических фильмов повествуют о том, как люди через несколько сотен лет будут путешествовать с планеты на планету. Нельзя говорить о том, что все это вымыслы пера, ведь за последнее столетие наука сделала прыжок вперед, охватив практически все сферы нашей жизни. Так или иначе, вопрос колонизации космоса хоть и не является острой необходимостью, но поднимается не только фантастами, но и учеными. Некоторые из них выдвигают смелые теории о том, что человек может колонизировать Марс, другие ищут в соседних галактиках планету со схожей к Земле атмосферой, которая может быть пригодна для жизни.
Нельзя утверждать, что космос – это нечто далекое от нас, то, что на нас никак не влияет. Вспышки на Солнце вызывают магнитные бури на Земле, что сказывается на ухудшении самочувствия человека. В этот же период увеличивается вероятность выхода из строя бытовых приборов.
Человечество должно интересоваться тематикой космоса, ведь именно оттуда поступает самый большой риск гибели цивилизации. На научном уровне об этом говорится мало, хоть некоторые теории гласят о том, что динозавры умерли именно вследствие столкновения Земли и большого космического тела. «Вестники Вселенной», которые иногда заходят в атмосферное пространство нашей планеты, таят в себе скрытую угрозу. Поскольку эта проблема касается всех жителей Земли, государства должны прикладывать максимум своих усилий для того, чтобы проводить мирную политику освоения космоса с элементами содружества.
Человек в исследовании космического пространства добился значительных результатов. Однако много всего остается еще нераскрытым и неподтвержденным. Исследование космоса никогда не потеряет своей актуальности, ведь оно дает возможность определить, по каким законам развивалась Вселенная, откуда появилась жизнь на Земле, и может ли она быть где-либо еще? Наш сайт kvant.space предлагает коллекцию научных статей о космосе, в которых известные «умы» современности высказывают свои рассуждения на вопросы этой области. Возможно, в скором будущем мы получим четкий и ясный ответ на то, что же такое Вселенная и космос, откуда все это взялось. В нынешнее время очень популярной является Теория Большого Взрыва, которая объясняет принцип происхождения материи во Вселенной. Ученые находят все больше подтверждений этой теории, подкрепляя рассуждения лабораторными экспериментами.
С каждым днем человечество интересуется космосом все больше и больше. Мы осознаем то, что сильно зависимы от происходящих процессов во Вселенной. Мы хотим понять то, как обустроена Вселенная, хоть это вряд ли возможно. Будем ждать новых интересных открытий, способных сделать нашу жизнь легче, лучше и комфортней.
Источник
Физика в космосе
Историческая справка освоения космоса. Законы вращения Земли; маятник Фуко. Рассмотрение особенностей инерции в космосе. Правила притяжения Луны Землёй. Температура в космосе как одно из фундаментальных понятий физики. Реактивное движение, импульс.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.03.2016 |
Размер файла | 42,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Физика в космосе
ученик 8″Б» класса
Преподаватель: Неретина И.В.
1. Историческая справка
2. Физика в космосе
2.1 Вращение Земли. Маятник Фуко
2.2 Инерция в космосе
2.3 Притяжение Луны Землёй
2.4 Температура в космосе
2.5 Реактивное движение. Импульс
Много тысяч лет назад, глядя на ночное небо, человек мечтал о полете к звездам. Шли века, человек приобретал все большую власть над природой, но мечта о полете к звездам оставалась все такой же несбыточной, как тысячи лет назад.
Средства для таких полетов, предлагавшиеся народной фантазией, были примитивны: колесница, влекомая орлами, крылья, прикрепленные к рукам человека. Предлагались разные средства для осуществления космического полета.
Писатели фантасты упоминали и ракеты. Однако эти ракеты были технически необоснованной мечтой. Ученые за многие века не назвали единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть могучую силу земного притяжения и унестись в межпланетное пространство.
1. Историческая справка
День 12 апреля 1961 г стал днём освоения космоса. В 9:07 по московскому времени со стартовой площадки №1 космодрома Байконур был запущен космический корабль «Восток-1» с первым в мире космонавтом на борту — Юрием Гагариным. Совершив один виток вокруг Земли и проделав путь в 41 тыс. км приземлился спустя 90 минут после старта, Первый полёт человека в космос управлялся с Земли, сам Гагарин являлся скорее пассажиром, хотя и великолепно подготовленным.
Нужно отметить, что условия полёта были далеки от тех, что предлагаются ныне космическим туристам: Гагарин испытывал восьми-десятикратные перегрузки, был период, когда корабль буквально кувыркался, а за иллюминаторами горела обшивка и плавился металл. В течение полёта произошло несколько сбоев в различных системах корабля, но к счастью, космонавт не пострадал.
2. Физика в космосе
2.1 Вращение Земли. Маятник Фуко
Более 500 лет назад польский астроном Николай Коперник впервые показал, что Земля вращается. Однако наглядно доказать это трудно. Хотя окружная скорость земной поверхности и достигает на экваторе огромной цифры — 465 метров в секунду, но мы не замечаем ее, так как сами вращаемся вместе с Землей. Важнейшее проявление вращения Земли — смена дня и ночи не являлось прямым подтверждением этого явления.
До Коперника предполагали, что Земля неподвижна, а вращаются миры, окружающие ее. Другие проявления вращения Земли, как, например, отклонение течения рек и искривление направления постоянных ветров, дующих в тропическом поясе, становятся заметными лишь при длительных наблюдениях и, очевидно, не могут наглядно подтвердить вращение Земли. Доказательство этого факта было дано спустя три столетия после открытия Коперника, когда Фуко в 1851 году подвесил свой маятник под куполом парижского Пантеона.
В 1931 году в Ленинграде, в здании бывшего Исаакиевского собора, также был установлен маятник Фуко. Этот маятник представляет собой тяжелый (54 кг) шар с длинным острием. Он подвешен на тонкой проволоке, которая укреплена под куполом собора на высоте 98 метров в стакане с шарикоподшипником, что не позволяет проволоке закручиваться. На полу, под маятником, расположены сектора, размеченные на градусы. Опыт Фуко основан на свойстве маятника сохранять все время одну и ту же плоскость качания, как бы ни поворачивалась опора его подвеса.
Перед началом опыта острие шара устанавливают над чертой сектора, обозначенной как О градусов, и, отведя шар в сторону, привязывают тонкой ниткой, которую затем пережигают. После этого маятник начинает качаться в неизменной плоскости с периодом колебаний в 20 секунд. Примерно через 5 минут сектор под маятником поворачивается на 1 градус против часовой стрелки, что и определяет направление и угловую скорость вращения Земли. Из приведенного описания легко установить основной недостаток опыта Фуко: демонстрировать его можно только в очень высоких помещениях, так как с уменьшением размеров маятника отклонение плоскости качания от начального положения за ограниченный промежуток времени становится все менее заметным.
Со дня первого опыта Фуко ученым не удалось предложить новых наглядных пособий и методов доказательства вращения Земли, хотя делались многочисленные попытки создать для этого специальные приборы. Упомянем хотя бы о многократно повторявшемся опыте падения тел с высоты, при котором тело отклоняется к востоку, то есть по направлению вращения Земли. Однако величина этого отклонения невелика. Например, при высоте 85 метров в средних широтах она составляет всего около 10 миллиметров. Таким образом, этот опыт для наглядной демонстрации непригоден. Изучение вращения Земли продолжает оставаться актуальным и для наших дней. Это необходимо для атеистической пропаганды, для астрономических наук, а в школах и институтах — для физических опытов. В течение ряда лет мы работали над созданием наглядных приборов, которые могли бы показать суточное вращение Земли. Приборы, сконструированные нами, отличаются от маятника Фуко в основном тем, что не отстают от вращающейся Земли, а обгоняют ее. Опишем кратко устройство некоторых из них.
Основным таким прибором является вращающийся маятник. Его главная часть — прямоугольная рамка, опирающаяся на два острия. Внутри рамки на горизонтальной оси может вращаться стержень с двумя равными грузами. В движение он приводится двумя пружинами. Для регистрации поворота прибора к рамке прикреплена стрелка. Чтобы привести прибор в действие, стержень вращают рукой до полного растяжения пружин. Затем он устанавливается горизонтально и привязывается к рамке тонкой ниткой. Через несколько секунд стрелка перестает дрожать, следовательно, прибор относительно вращающейся Земли не перемещается. Его пуск осуществляется простым пережиганием нитки. Под действием пружин стержень начинает вращаться, и через 15-20 секунд, как только он разовьет достаточное для преодоления трения в центрах рамки число оборотов, прибор обгоняет вращающуюся Землю. Наблюдатели регистрируют это движение по отклонению стрелки от начального положения. Таким образом, обнаруживается вращение Земли и направление этого движения против часовой стрелки. Весь процесс, включая завод маятника, занимает не более 4-5 минут.
Действие прибора основано на известном в физике законе сохранения момента количества движения в случае вращения тел. Согласно этому закону, произведение веса каждой частицы тела на расстояние от оси вращения и на скорость должно оставаться постоянным. В нашем приборе расстояние грузов на стержне от вертикальной оси имеет наибольшее значение при горизонтальном положении стержня, то есть в момент пережигания нити, и наименьшее значение в то время, когда он проходит через вертикаль. До пережигания нити стержень, участвуя во вращении Земли, имеет угловую скорость относительно вертикальной оси, равную скорости вращения Земли. После того как нить пережигается, расстояние грузов от вертикальной оси меняется, но остается всегда меньше, чем при пуске прибора. Поэтому такое уменьшение расстояния сопровождается увеличением угловой скорости грузов и всего прибора относительно Земли. В результате прибор обгоняет Землю и поворачивается вокруг вертикальной оси на некоторый угол, указываемый стрелкой. При высоте в 2400 миллиметров и весе 9 килограммов (в том числе вес грузов 3 килограмма) скорость вращения рамки прибора превышает скорость вращения Земли примерно в 15 раз. Это значит, что при непрерывном вращении стержня с грузами, например, от электродвигателя, рамка прибора на широте Ленинграда сделает в сутки полных 13 оборотов. При увеличении высоты до 3000 миллиметров с соответственным увеличением веса грузов скорость вращения прибора превысит скорость вращения Земли примерно в 25 раз, что еще более увеличит наглядность опыта. Вращающийся маятник выгодно отличается от маятника Фуко своими незначительными размерами, позволяющими устанавливать его в небольшом помещении, краткостью времени, в течение которого влияние суточного вращения Земли на прибор становится заметным наблюдателям, и, наконец, его невысокой стоимостью. Однако вращающийся маятник неудобен тем, что его необходимо заводить перед пуском.
Это может быть устранено заменой пружинного привода электродвигателем. Разработанный нами другой прибор — качающийся маятник — основан на принципе действия вращающегося маятника, но отличается от него отсутствием пружин. Кроме того одинаковые грузы в нем заменены грузами разного веса. Перед демонстрацией стержень с грузами также привязывают нитью к рамке, затем нить пережигают, и прибор действует аналогично вращающемуся маятнику. Его отличие от маятника Фуко заключается в том, что он имеет негибкий стержень, который может качаться лишь в плоскости рамы, поэтому вращение Земли вызывает вращение всей рамы в центрах, вокруг вертикальной оси. Вращающийся и качающийся маятники нашей конструкции установлены и демонстрируются в Московском планетарии. Следует отметить, что эти приборы позволяют непосредственно измерить силы, возникающие при движении всех тел на вращающейся Земле.
Для того чтобы выполнить такое измерение, на вертикальную ось рамки прибора в направлении против часовой стрелки наматывается нить, которая затем перекидывается через блок. К концу нити привязывается гиря весом в 5-10 граммов. Таким образом на оси маятника создается дополнительный момент сил, увеличивающий эффект вращения Земли на прибор. Стрелка при работе прибора отклоняется на угол, значительно больший, чем при пуске без гири. Затем та же нить наматывается на ось в направлении по часовой стрелке, и создается момент сил, уменьшающий эффект вращения Земли на прибор. Стрелка при этом отклоняется на угол, значительно меньший, чем при пуске с гирей в первом опыте. По разности углов отклонения стрелки и весу гири можно легко определить величину сил, возникающих от вращения Земли.
2.2 Инерция в космосе
Инерция — неотъемлемое свойство движущейся материи. Галилео Галилей первый объяснил явление инерции. Исаак Ньютон сформулировал «закон инерции»: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения, пока действия со стороны других тел не изменят этого состояния.
Если бы не было инерции.
Представим на минуту, что произошло бы в мире, если бы мгновенно исчезло свойство тел, которое мы называем инерцией. Луна упала бы на Землю. Планеты упали бы на Солнце, движение тела могло бы осуществляться только под действием силы и прекращалось бы с исчезновением последней. Таким образом, инерция — выражение единства материи и движения. Земля является лишь одним из миллиардов небесных тел в бесконечной Вселенной. Нашим ближайшим соседом в космосе и одновременно единственным естественным спутником является Луна (d=3475 км, от Земли Луна удалена в среднем примерно на 385 000 км). Двигаясь по инерции, Луна должна удаляться от Земли. Почему же этого не происходит?
2.3 Притяжение Луны Землёй
В 1687 г. Исаак Ньютон впервые нашел обоснованное объяснение тому, почему планеты вращаются вокруг Солнца, а Луна — вокруг Земли. Согласно хорошо известной всем легенде, Ньютон однажды сидел в саду и увидел падающее с дерева яблоко. Он спросил себя, почему яблоко упало на землю, а Луна на неё не падает? Учёный увлёкся этой простой лишь на первый взгляд проблемой, тесно связанной с Галилеевым законом свободного падения, и пришел к понятию силы тяготения. Упавшее на Землю яблоко навело его на мысль, что одна и та же сила притягивает яблоко к земле и удерживает Луну на её орбите вокруг Земли. Мы называем эту силу гравитацией, силой тяжести или силой земного притяжения. Если эта красивая история про яблоко — правда, то именно это яблоко было самым важным в истории науки.
Луна притягивается к Земле на 0,0013 м/сек. Но Луна также движется по инерции, на 1,3 мм/сек отдаляясь от земли. В результате движения складываются и Луна движется по траектории, близкой к окружности.
2.4 Температура в космосе
— Температура — одно из фундаментальных понятий в физике, она играет огромную роль в том, что касается земной жизни любых форм. При очень высоких или очень низких температурах различные вещи могут вести себя очень странно. Предлагаем вам узнать о ряде интересных фактов, связанных с температурами.
— Какая температура самая высокая?
— Самая высокая температура, которую создал человек, составила 4 миллиарда градусов Цельсия. Трудно поверить, что температура вещества может достичь такого невероятного уровня! Эта температура в 250 раз выше температуры ядра Солнца.
— Невероятный рекорд был поставлен в Естественной Лаборатории Брукхэвена в Нью-Йорке в ионном коллайдере, длина которого — около 4 километров. Ученые заставили столкнуться ионы золота, пытаясь воспроизвести условия Большого взрыва, создав кварк-глюонную плазму. В таком состоянии частицы, которые составляют ядра атомов — протоны и нейтроны, взрываются.
Самая низкая температура, которую удалось достичь в искусственных условиях — 100 пико Кельвинов или 0.0000000001 K. Чтобы добиться такой температуры, необходимо воспользоваться магнитным охлаждением. Также подобных низких температур можно добиться, используя лазеры.
При таких температурах материал ведет себя вовсе не так, как при обычных условиях.
Экстремальная температура в Солнечной Системе.
Температура среды в Солнечной системе отличается от той, к которой мы привыкли на Земле. Наша звезда Солнце невероятно горячая. В ее центре температура составляет около 15 миллионов Кельвинов, а поверхность Солнца имеет температуру всего около 5700 Кельвинов.
Температура в ядре нашей планеты составляет примерно столько же, сколько температура поверхности Солнца. Самая горячая планета Солнечной системы — Юпитер, температура ядра которого в 5 раз выше, чем температура поверхности Солнца.
Самая холодная температура в нашей системе зафиксирована на Луне: в некоторых кратерах в тени температура составляет всего 30 Кельвинов выше абсолютного нуля. Эта температура ниже, чем температура Плутона!
Самое холодное место в космосе.
Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки. В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или -272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.
2.5 Реактивное движение. Импульс
Под реактивным движением понимают движение тела, возникающее при отделении от тела его части с некоторой относительно тела скоростью.
При этом появляется так называемая реактивная сила, толкающая тело в сторону, противоположную направлению движения отделяющейся от него части тела.
Реактивное движение совершает ракета (рис. 1). Основной частью реактивного двигателя является камера сгорания. В одной из ее стенок имеется отверстие — реактивное сопло, предназначенное для выхода газа, образующегося при сгорании топлива. Высокая температура и давление газа определяют большую скорость истечения его из сопла.
космос физика луна инерция
До работы двигателя импульс ракеты и горючего был равен нулю, следовательно, и после включения двигателей геометрическая сумма импульсов ракеты и истекающих газов равна нулю:
где — масса и скорость выбрасываемых газов, — масса и скорость ракеты.
В проекции на ось Oy
Эта формула справедлива при условии небольшого изменения массы ракеты.
Главная особенность реактивного движения состоит в том, что ракета может как ускоряться, так и тормозиться и поворачиваться без какого-либо взаимодействия с другими телами в отличие от всех других транспортных средств.
Если два человека будут находиться рядом, а потом один из них толкнет другого, то он не только придаст тому ускорение, но и сам отлетит назад. И чем сильнее он толкнет кого-либо, тем с большей скоростью отлетит сам.
Наверняка, вам приходилось бывать в подобной ситуации, и вы можете представить себе, как это происходит. Так вот, именно на этом и основано реактивное движение.
Ракеты, в которых реализован этот принцип, выбрасывают некоторую часть своей массы на большой скорости, вследствие чего сами приобретают некоторое ускорение в противоположном направлении.
Потоки раскаленных газов, возникающие в результате сгорания топлива, выбрасываются через узкие сопла для придания им максимально большой скорости. При этом, на величину массы этих газов уменьшается масса ракеты, и она приобретает некую скорость. Таким образом реализован принцип реактивного движения в физике.
На протяжении тысячелетий астрономы получали только ту информацию о небесных явлениях, которую им приносил свет. Можно сказать, что они изучали эти явления через узенькую щель в обширном спектре электромагнитных излучений. Три десятилетия тому назад благодаря развитию радиофизики возникла радиоастрономия, необычайно расширившая наши представления о Вселенной. Она помогла узнать о существовании многих космических объектов, о которых ранее не было известно. Дополнительным источником астрономических знаний стал участок электромагнитной шкалы, лежащий в диапазоне дециметровых и сантиметровых радиоволн.
Огромный поток научной информации приносят из космоса другие виды электромагнитного излучения, которые не достигают поверхности Земли, поглощаясь в ее атмосфере. С выходом человека в космическое пространство родились новые разделы астрономии: ультрафиолетовая и инфракрасная астрономия, рентгеновская и гамма-астрономия. Необычайно расширилась возможность исследования первичных космических частиц, падающих на границу земной атмосферы: астрономы могут исследовать все виды частиц и излучений, приходящих из космического пространства. Объем научной информации, полученной астрономами за последние десятилетия, намного превысил объем информации, добытой за всю прошлую историю астрономии. Используемые при этом методы исследования и регистрирующая аппаратура заимствуются из арсенала современной физики; древняя астрономия превращается в молодую, бурно развивающуюся астрофизику.
Сейчас создаются основы нейтринной астрономии, которая будет доставлять ученым сведения о процессах, происходящих в недрах космических тел, например в глубинах нашего Солнца. Создание нейтринной астрономии стало возможным только благодаря успехам физики атомных ядер и элементарных частиц.
Самое, пожалуй, удивительное в современной физике-это неожиданная связь между космосом, где галактики и звездные скопления разбросаны подобно редким пылинкам, и тесным, исчезающе малым микромиром элементарных частиц. Два полюса мироздания! На одном огромная, расширяющаяся Вселенная, на другом-не видимые ни под каким микроскопом, почти эфемерные «кирпичики» вещества. И вот оказывается, что при определенных условиях Вселенная может обладать свойствами микрочастицы, а некоторые микрообъекты, возможно, содержат внутри себя целые космические миры. Во всяком случае, так говорит теория. Большое и малое, сложное и простое-здесь все переплелось. Как хитро устроена природа! Она как масштабная линейка, завязанная в узел. Поди разберись, где тут начало! Из чего состоят протон и нейтрон? Есть ли что-нибудь еще глубже, меньше? И вообще, может ли быть предел делимости материи? Что творилось в нашей Вселенной, когда она была еще совсем юной и ее размеры были в миллиарды миллиардов раз меньше атома? Что такое античастицы и существуют ли миры из антивещества? Масса вопросов, и каждый из них тянет за собой вереницу новых, про которые и самим ученым еще далеко не все ясно. Вселенная оказывается бесконечно многообразной, неисчерпаемой для исследователя…
«Здесь скрыты столь глубокие тайны и столь возвышенные мысли, что, несмотря на старания сотен остроумнейших мыслителей, трудившихся в течение тысяч лет, еще не удалось проникнуть в них, и радость творческих исканий и открытий все еще продолжает существовать». Эти слова, сказанные Галилеем три с половиной столетия назад, нисколько не устарели.
1. «Беседы по физике» М.И. Блудов
2. Изд. «Просвещение» 1984 г. «Космос у тебя дома» Ф. Рабиза
3. Изд. «Детская литература» 1984 г. Серия «100 человек, которые изменили ход истории»
Источник