Меню

Спутники ретрансляторы вокруг луны

Лунная GPS: Европейское космическое агентство оснастит Луну системой спутников

Европейское космическое агентство (ESA) начало разработку системы из группы спутников, которая будет вращаться вокруг Луны и предоставлять навигационные и телекоммуникационные услуги исследователям.

Если все пойдет по плану, новая система может появиться в конце 2020-х годов, всего через несколько лет после ожидаемой посадки пилотируемой миссии NASA Artemis 3 возле южного полюса Луны.

В ESA полагают, что Луна в ближайшие годы станет довольно оживленным местом не только благодаря исследователям, но и благодаря коммерческим компаниям. Новый проект, получивший название «Лунный свет», упростит и удешевит расцвет молодой лунной экономики, заявили в ESA.

На данный момент ESA заключило контракты с двумя европейскими промышленными консорциумами – SSTL и Telespazio – на изучение осуществимости такого предприятия в течение следующих полутора лет.

В настоящее время для поддержки одной лунной миссии требуется сеть больших наземных антенн для дальней космической связи, которые отслеживают и определяют положение орбитального аппарата или посадочного модуля. Но такой способ работы – медленный и дорогостоящий, сказал на пресс-конференции Пол Верхоэф, директор по навигации ESA.

Точность данных позиционирования далека от аналогичной на Земле – всего лишь от 500 метров до пяти километров. Для сравнения, точность Глобальной системы позиционирования США (GPS) составляет от 30 сантиметров до пяти метров. Более того, каждый посадочный модуль должен нести около 40 кг подсистем навигации.

По словам Верхоэфа, с установленной лунной навигационной спутниковой системой будущим лунным аппаратам потребуется только простой приемник и высотомер, чтобы безопасно совершить посадку.

«Уменьшение веса и объема аппаратуры затем будет использовано для установки дополнительных инструментов на ваш посадочный модуль и доставки их на Луну», – добавил Верхоэф.

На начальном этапе в ESA хотят воспользоваться множеством навигационных спутников, которые уже вращаются вокруг Земли. Помимо сети GPS США, существуют еще три глобальные навигационные спутниковые системы (GNSS), обеспечивающие жителей планеты высокоточными данными о местоположении: европейская Galileo, российская Glonass и китайская Beidou. Все эти спутники могут передавать полезные данные транспортным средствам на Луне.

Верхоэф заявил, что лунная навигационная группировка, вероятно, будет состоять из трех или четырех спутников с возможным добавлением дополнительных.

«С тремя или четырьмя спутниками мы уже можем сделать довольно много. На данный момент у нас цель – обеспечить точность в 100 метров и, возможно, лучше. Мы думаем, что сможем достичь точности в 30 метров», – отмечает Верхоэф.

По словам директора SSTL Фила Браунетта, создание общей навигационной и телекоммуникационной сети для Луны, послужит катализатором для новых исследовательских миссий не только странами-членами ESA, но и международными партнерами. «Мы видим, что это значительно снизит стоимость и сложность последующих экспедиций», – говорит он.

Какие привычки достались собакам от диких предков?

Московский бит: путешествуем с Gett

Отдых в гармонии с природой: как развивается Красная Поляна

Источник

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

Технические секреты лунной миссии “Чанъэ-4”: орбитальный ретранслятор “Сорочный мост”

Главное в сложном техническом проекте — организовать стабильную связь между всеми компонентами. Вот и первой частью миссии «Чанъэ-4» была организация канала связи с аппаратами на обратной стороне Луны. Полгода назад началась эра ретрансляционной радиосвязи с обратной стороной Луны. Как это было сделано, какие данные передаются между аппаратами на Луне (посадочный модуль и ровер) и спутником-ретранслятором за Луной, как организована далее связь с ЦУП на Земле (через центр космической связи) и с какими скоростями передачи данных — описано тут. Канал связи — тонкая невидимая нить, связывающая обратную сторону Луны и Землю, которая должна быть легкой и простой в реализации, но и надежной с точки зрения отказов узлов, так как при отсутствии этого единственного канала связи — аппараты на обратной стороне Луны будут потеряны и предоставлены сами себе (на некоторое время автоматике).

Одной из основных проблем при исследовании дальней стороны Луны является проблема, связанная с организацией связи, поскольку устройства на обратной стороне Луны не доступны для связи напрямую с Земли (обратная сторона никогда не видна с Земли из-за явления приливного захвата), поэтому для передачи сигналов по каналу «Земля обратная сторона Луны» необходим отдельный и специальный спутник-ретранслятор для связи.

С помощью спутника-ретранслятора планировалось выполнить задачи:

  • организовать (первый в мире) канал передачи данных «обратная сторона Луны Земля»;
  • организовать слежение за спускаемым аппаратом «Чанъэ-4» и передачу данных при выполнении аппаратом лунных маневров и процедуры посадки на обратную сторону Луны;
  • передать в ЦУП на Земле полноценное управление спущенными на поверхность обратной стороны Луны аппаратами (модулем «Чанъэ-4» и ровером «Юйту-2»), используя подсистему слежения, телеметрии и передачи команд управления (TT&C — tracking, telemetry and command subsystem);
  • получать научные данные независимо по отдельным каналам связи от спускаемого модуля «Чанъэ-4» и ровера «Юйту-2», пересылать эти данные в ЦУП на Земле;
  • проводить собственные научные эксперименты (используя бортовой низкочастотный спектрометр) и передавать полученные научные данные в ЦУП на Земле;
  • проводить съемку на бортовую фотокамеру космического пространства и передавать фотографии в ЦУП на Земле;
  • поддерживать канал передачи данных «обратная сторона Луны-Земля» в работоспособном режиме не менее 5 лет после начала работы спутника на орбите за Луной (максимально расчетный срок службы — до 10 лет);
  • программно-аппаратная часть спутника рассчитана для работы с оборудованием не только для одного проекта «Чанъэ-4», так как срок службы спускаемого модуля «Чанъэ-4» один год, а ровер «Юйту-2» рассчитан на работу в течение трех месяцев, но уже превысил почти в два раза это время, так что спутник-ретранслятор и после окончания проекта «Чанъэ-4» будет далее задействован в новых исследованиях и для организации каналов связи с новыми аппаратами на обратной стороне Луны.
Читайте также:  Правда что будет две луны

Был разработан уникальный спутник-ретранслятор, который планировалось вывести на гало-орбиту вокруг особой гравитационно стабильной точки Лагранжа Земля-Луна L2, из которой он будет поддерживать прямую видимость с Землей и обратной стороной Луны в любое время, выдерживая перепад температур до 300 градусов Цельсия.

У инженеров Китайской академии космических технологий (CAST) было всего 30 месяцев на разработку спутника-ретранслятора.

В декабре 2015 года начались проектные работы, спустя два года уже был произведен финальный опытный образец спутника, который после испытаний и тестирования был подготовлен к запуску в космическое пространство.

Команда космических связистов работала совместно с группой ученых и инженеров, которые разрабатывали и реализовывали лунные аппараты для проекта «Чанъэ-4» — посадочный модуль «Чанъэ-4» и ровер «Юйту-2», связь с которыми была главной задачей их проекта.

На 2015 год у команды космических инженеров-связистов Китайской академии космических технологий уже был опыт в разработке спутников, аппаратуры дальней космической связи и управлением лунными космическими аппаратами:

  • 7 ноября 2007 года был запущен первый китайский лунный спутник «Чанъэ-1»;
  • 1 октября 2010 года был запущен исследовательский спутник «Чанъэ-2», который до 9 июля 2011 года работал на лунной орбите, а потом покинул ее, чтобы через 77 дней достичь точки Лагранжа L2 системы «Солнце-Земля» (в 1,5 миллионах километрах от Земли) для проведения научных экспериментов;
  • посадочный модуль «Чанъэ-3» и ровер «Юйту», которые были успешно посажены на видимую сторону Луны 14 декабря 2013 года, причем посадочный модуль «Чанъэ-3» до сих пор выходит на связь с ЦУП на Земле.

Однако, у инженеров-связистов Китайской академии космических технологий был жесткий дедлайн, сроки запуска спутника-ретранслятора и его выхода на рабочую орбиту не могли быть сорваны, так как при любой аварийной ситуации или нештатной работе элементов спутника — запуск космического аппарата «Чанъэ-4» с лунным ровером «Юйту-2» на обратную сторону Луны был бы невозможен в планируемый срок, отложен или даже отменен.

В общем, 2018 год был очень напряженным у китайских космических связистов.

Но у них все получилось — 425-килограммовый спутник-ретранслятор под названием «Цэюцяо» (в переводе — «Сорочий мост») в Китайской академии космических технологий спроектировали, произвели на собственных мощностях (были подключены еще инженеры из Нидерландов для совместной научной дополнительной нагрузки — установки на спутник-ретранслятор специального низкочастотного телескопа-спектрометра) и запустили в установленный срок и с полным функционалом.

Для создания спутника-ретранслятора «Цэюцяо» была использована платформа CAST-100 от Китайской академии космических технологий, в ее проектировании и производстве были задействованы специалисты китайской компании DFH Satellite Co., Ltd. (DFHSat), которая тесно работает с CAST и принадлежит компании China Spacesat.

Спутниковая платформа CAST-100 включает в себя:

  • систему стабилизации по трём осям, навигационную систему управления, систему термоконтроля;
  • однокомпонентную силовую установка со 100 кг безводного цезиевого топлива (гидразина), с общей тягой 130H (ньютонов), 12 двигателей — 8 двигателей по 5Н (по два на каждую из нижних сторон куба) и центральные 4 двигателя по 20Н;
  • систему электропитания бортовых систем, состоящую из двух солнечных батарей (максимальная выходная мощность солнечной батареи составляет около 800 Вт) площадью 3,8 м2 и высокоэнергетического литий-ионного аккумуляторного блока 45А/ч.

Общий вес спутника-ретранслятора составляет 425 кг, он имеет кубовидную форму с размером 1,4 м × 1,4 м × 0,85 м, его корпус состоит из алюминиевой сотовой сэндвич-структуры.

На спутниковую платформу CAST-100 были добавлены следующие системы в качестве полезной нагрузки (основной и дополнительной):

1) основная нагрузка — это радиоретранслятор.

Система радиоретранслятора спутника-ретранслятора «Цэюцяо» работает в X-диапазоне и в S-диапазоне.

X-диапазон используется для связи с посадочным модулем «Чанъэ-4» и ровером «Юйту-2» — организуются четыре канала со скоростью передачи данных:

  • направление «ровер\посадочный модуль спутник-ретранслятор» 256-280 килобит/с;
  • направление «спутник-ретранслятор ровер\посадочный модуль» 125 бит/с.

S-диапазон используется для для передачи данных на Землю — организуется один канал со скоростью передачи данных 2 мегабит/с.

Данные телеметрии TTC&C (USB+VLBI) передаются со скоростью 1000/2048 бит/с.

В состав радиоретранслятора входит уникальная параболическая антенна диаметром 4,2 метра, которая раскрывается как зонтик после выхода спутника-ретранслятора на рабочую орбиту.

2) дополнительная нагрузка:

  • Нидерландский низкочастотный экспериментальный радиотелескоп (NCLE) с тремя пятиметровыми антеннами, с помощью которого будет регистрироваться низкочастотное радиоизлучение ранней Вселенной для изучения ее структуры;
  • широкоугольный лазерный отражатель для измерения расстояния между космическим аппаратом и наземной станцией, который разработан Университетом Сунь Ятсена в провинции Гуандун на юге Китая и будет задействован для проведения самого длинного в мире измерения расстояния с помощью лазера между спутником-ретранслятором и обсерваторией на Земле;
  • фотокамера, которую так же планируют использовать для съемки астероидов, падающих на обратную сторону Луны;
  • чтобы заинтересовать общественность в проектах по освоению космоса и исследованию Луны, в Китайском космическом агенстве (CNSA) предложили всем желающим записать свои пожелания по исследованию Луны и космоса, а спутник-ретранслятор несет на своем борту имена десятков тысяч участников этого события и их сообщения.

Вот такая фотокамера установлена на спутнике-ретрансляторе:

Пример фотографии со спутника-ретранслятора:

Лазерный отражатель (чертеж):

Как раскрываются элементы спутника-ретранслятора (антенна, батареи и спектрометр):

Читайте также:  Направление луны по времени

С инженерами в лаборатории (для масштаба):

Антенна (слева сам блок антенны, справа уже на спутник установлена):

В раскрытом виде на тестах:

Научное оборудование (три антенны низкочастотного радиотелескопа, в раздвижном состоянии каждая из них длинной 5 метров):

Копия масштабом 1 к 3 спутника-ретранслятора в музее космонавтики:

Про параболическую антенну-зонтик и ее создание

Инженеры Китайской академии космических технологий разработали для спутника-ретранслятора несколько вариантов антенн, в том числе в форме зонтика диаметром 420 сантиметров в раскрытом виде.

В разработке и производстве такой антенны были задействованы… текстильные технологи и часовщики.

Только совместным трудом инженеров-связистов и специалистов часовой и текстильной промышленности в лаборатории Китайской академии космических технологий смогли решить непростую задачу по группированию мельчайших элементов металлической сетки антенны и ее 18-ти ребер, чтобы она могла находится в сложенном до нужных размеров для транспортировке и запуска состоянии, а в открытом космосе смогла развернуться как пляжный зонтик.

Элементы антенны выдерживают изменения температуры более 300 градусов по Цельсию.

В специальных стендовых лабораториях Китайской академии космических технологий были проведены десятки испытания и программ тестирования компонентов антенны и ее общей сборки, перед установкой на спутник-ретранслятор.

В состав антенны входит специальный приводной механизм для управления отслеживанием направления, который позволяет контролировать направление антенны в проектном диапазоне с шагом до 0,2°.

Визуализация развертывания антенны в космическом пространстве:

На элементы антенны воздействуют низкотемпературные условия окружающей среды. Температура некоторых ребер, натяжных тросов, металлической сетки и других компонентов на антенне будет опускаться ниже -200°C, что необходимо было учесть в ее производстве.

Проблемы, ограниченный бюджет на разработку и производство

В ходе разработки спутника-ретранслятора инженеры по возможности максимально унаследовали конструкцию телекоммуникационной системы проекта «Чанъэ-3», так что проблем в реализации плеча канала связи «Спутник-ретранслятор аппараты на обратной стороне Луны» почти не было.

Спутником-ретранслятором полученные и демодулированные данные от посадочного модуля «Чанъэ-4» и ровера «Юйту-2» объединяются в соответствии с протоколом связи и передаются в ЦУП на Землю через систему прямой космической связи.

Основная проблема в реализации плеча канала связи «Спутник-ретранслятор аппараты на обратной стороне Луны» была в том, что максимальное расстояние этого канала составляет около 80000 км, а затухание сигнала на таком расстоянии достигает 210 дБ. Поэтому, инженерам пришлось находить баланс между пропускной способностью канала связи, динамическим изменением положений трех аппаратов (спутника, посадочного модуля и ровера), а также системой управления мощностью радиоретранслятора.

Оптимальная рабочая схема у них получилась такая: данные телеметрии передаются при любом расстоянии от аппаратов на поверхности до спутника-ретранслятора, а вот передача научных данных (большие объемы данных) организована в том случае, когда ориентация двух устройств (спутник-ровер или спутник-посадочный модуль) относительно стабильна и мощности всех устройств хватает для организации канала с нужной пропускной способностью.

Например, антенны ровера «Юйту-2» необходимо настроить так, чтобы они указывали на спутник-ретранслятор, для корректной отправки и получения управляющих сигналов, в то время как солнечные панели ровера должны быть оптимально наклонены для попадания на них большого количества солнечного света, чтобы максимизировать выработку электроэнергии в момент совершения передачи данных.

В плече канала связи «Спутник-ретранслятор ЦУП на Земле» после выхода спутником-ретранслятором на гало-орбиту вокруг точки Лагранжа L2 системы «Земля-Луна» выполняется калибровка точности наведения ретрансляционной антенны (расстояние 480000 км).

В процессе калибровки ретрансляционная антенна спутника-ретранслятора направлена на Шанхайскую астрономическую обсерваторию Китайской академии наук. С Земли сигнал отслеживается с помощью наземной антенны с апертурой 65 метров. Результаты испытаний показывают, что ретрансляционная антенна с высоким коэффициентом усиления имеет отклонение наведения менее 0,1°, что удовлетворяет требованиям для данного проекта.

Спутник-ретранслятор проводит ежедневное самотестирование своих систем — проверяет ключевые функции и показатели эффективности (характеристики РЧ-модуляции, время сбора, задержка пересылки и формат данных) системы ретрансляции. Результаты тестирования отсылаются в ЦУП на Земле, где анализируются на соответствие проектным требованиям.

Калибровка и тестирование необходимы, так как у спутника-ретранслятора, находящегося на рабочей гало-орбите, из-за тепловой деформации и других факторов фактическая орбитальная ориентация антенны ретрансляционной связи будет иметь отклонения в наведении, которые необходимо корректировать и проверять их изменения.

Расчетная тепловая деформация элементов антенны (в мм) при разных температурах:

Расходы на проектирование, производство и запуск аппаратов миссии «Чанъэ-4» были жестко лимитированы. А возможности даже немножко превысить затраты — не то что не было, а наоборот, инженеры были мотивированы минимизировать части и элементы проекта, дорабатывать и расширять их функционал, чтобы уменьшить итоговую стоимость производства и сократить затраты.

Поэтому, спутник-ретранслятор был изначально спроектирован с относительно небольшим весом (425 кг), чтобы затраты на его производство и запуск были минимальны.

Были ли резервные спутники-ретрансляторы сделаны? Это интересный вопрос — как вариант, были сделаны несколько прототипов, но запущен был только один, самый проверенный.

Что будет, если в космическом пространстве спутник-ретранслятор выйдет из строя? Конечно, в его составе есть несколько дублирующих элементов, которые наиболее критичны для проекта — части бортового компьютера, системы электропитания и радиоретранслятора.
Если спутник достигнет своей рабочей орбиты за Луной, то тут уже его работоспособность будет максимальна и срок службы может составлять до 10 лет.

Самая большая проблема, которая может возникнуть у спутника-ретранслятора — это фатальное повреждение антенны, поэтому ее сделали в виде гигантского зонтика с сетчатым внутренним покрытием, которое микрометеориты могут повреждать, не выводя из строя функциональную часть. А шанс, что большой метеорит столкнется со спутником-ретранслятором очень небольшой.

Читайте также:  Как рисовать луну ребенку

Однако, если такое произойдет, то в течение 30 суток можно будет восстановить канал связи «Земля обратная сторона Луны», путем запуска нового спутника-ретранслятора и вывода его на рабочую орбиту за Луной.

У инженеров Китайской академии космических технологий были следующие новые задачи после создания спутника-ретранслятора:

  • подготовить спутник-ретранслятор к запуску на ракета-носителе и сопровождать запуск;
  • отслеживать его траекторию и направлять спутник-ретранслятор до Луны;
  • выполнить лунный маневр для перехода на рабочую гало орбиту вокруг точки Лагранжа L2 системы «Земля-Луна»;
  • тестировать канал связи со спутником, пока лунные аппараты миссии «Чанъэ-4» не выйдут в конце декабря 2018 года на орбиту Луны;
  • провести первый сеанс связи с посадочным модулем «Чанъэ-4» в конце декабря 2018 года, посадочный модуль «Чанъэ-4» находится на орбите Луны;
  • 3 января 2019 года получать данные от посадочного модуля «Чанъэ-4», который начнет процедуру посадки на обратную сторону Луны;
  • провести первый сеанс связи с посадочным модулем «Чанъэ-4» и ровером «Юйту-2», которые находятся на поверхности обратной стороны Луны.

Запуск и работа в космическом пространстве

21 мая 2018 года: с Китайского космодрома Сичан запущен спутник-ретранслятор «Цэюцяо» (Сорочий мост). Старт в ЦУП на Земле:

Отделение полезной нагрузки:

Траектория полета спутника-ретранслятора «Цэюцяо»:

14 июня 2018 года: Cпутник-ретранслятор «Цэюцяо» вышел на гало-орбиту вокруг точки Лагранжа L2 системы «Земля-Луна», примерно в 65000 км от Луны, став первым в мире спутником связи, работающим на этой орбите.

Вот такая фотография была получена со спутника-ретранслятора «Цэюцяо»:

Где видны Луна, Земля и элементы спутника:

Спутник-ретранслятор может оставаться на своей орбите в течение длительного времени из-за относительно низкого расхода топлива, поскольку гравитация Земли и Луны уравновешивает его орбитальное движение.

Находясь на своей орбите, спутник-ретранслятор может «видеть» как Землю, так и обратную сторону Луны. С Земли орбита спутника-ретранслятора выглядит как ореол Луны.

Концепция развертывания ретрансляционного спутника на гало-орбите была впервые выдвинута американскими космическими экспертами в 1960-х годах (основной вклад в расчет такой орбиты внес Роберт Фаркуар — специалист по проектированию миссий NASA более 50 лет назад — в 1968 году), но была впервые была реализована китайскими космическими инженерами только в 2018 году. Точки либрации системы «Земля-Луна»:

Организация связи с посадочным модулем «Чанъэ-4» и ровером «Юйту-2»

Спустя шесть месяцев, как спутник-ретранслятор «Цэюцяо» достиг своей рабочей орбиты за Луной, началась вторая рабочая фаза проекта «Чанъэ-4» — вывод в космическое пространство аппарата «Чанъэ-4» с лунным ровером «Юйту-2» на борту.

8 декабря 2018 года: Ракета-носитель «Чанчжэн-3B» со станцией «Чанъэ-4» успешно запущена с Китайского космодрома «Сичан».

Траектория полета станции «Чанъэ-4»:

Через 110 часов станция «Чанъэ-4» достигла Луны и перешла на ее орбиту.

Вот тогда и началось первое боевое тестирование спутника-ретранслятора «Цэюцяо» путем организации канала связи со станцией «Чанъэ-4», когда она пролетала над обратной стороной Луны:

Режимы тестирования и работы спутника-ретранслятора «Цэюцяо» и аппаратов станции «Чанъэ-4» (спускаемого модуля и ровера)

Когда станцией «Чанъэ-4» приступила к процедуре посадки 3 января 2019 года, то тут уже в ЦУП на Земле переключились на полноценную работу со спутником-ретранслятором «Цэюцяо» для получения телеметрии и фотографий со спускаемого модуля «Чанъэ-4».

3 января 2019 года: спускаемый аппарат «Чанъэ-4» совершает посадку в кратере «Карман» на обратной стороне Луны. В составе посадочного аппарата «Чанъэ-4» находится второй Китайский лунный ровер «Юйту-2», модернизированный аналог ровера «Юйту».

Через спутник-ретранслятор «Цэюцяо» в ЦУП на Земле получают первые изображения обратной стороны Луны в зоне приземления, а также тысячи кадров с посадочной камеры посадочного аппарата «Чанъэ-4», объединив которые, получилось такое замечательное видео посадки на обратную сторону Луны:

Видео процедуры посадки на обратную сторону Луны:

После окончания всех этапов процедуры успешной посадки и установки независимых каналов связи с аппаратами «Чанъэ-4» (посадочным модулем и ровером), началась эра исследования обратной стороны Луны.

Но всего этого могло бы не было без спутника-ретранслятора «Цэюцяо» и организованной с помощью него системы связи:

Схема организации связи проекта «Чанъэ-4»:

Данные телеметрии от посадочного модуля «Чанъэ-4» и лунного ровера «Юйту-2 поступают на спутник-ретранслятор «Цэюцяо», который далее их передает на Землю в Пекинский центр аэрокосмического контроля, а далее в ЦУП, что приводит к задержке получения данных операторами на Земле до двух-трех минут. В центре космической связи:

В центре управления полетами Китайской академии космических технологий:

Вопрос: Можно ли с помощью ретранслятора спутника «Цэюцяо» вести прямую трансляцию с поверхности обратной стороны Луны?

Ответ: Теоретически это возможно, но текущие каналы связи не могут соответствовать требованиям для потоковой передачи видео в реальном времени.

В Китайской академии космических технологий делают все возможное, чтобы спутник-ретранслятор смог работать как можно дольше, обеспечивая в будущем связь для зондов и аппаратов других стран, если они намерены исследовать обратную сторону Луны в течение срока службы спутника.

Это мирный научный проект, к которому могут присоединиться все желающие.

Тем более, что при осуществлении маневров спутником-ретранслятором для достижения своей рабочей орбиты инженерам Китайской академии космических технологий удалось оптимизировать количество маневров двигателями, что позволило сэкономить 16,8 кг топлива, которые могут быть теперь использованы в дальнейшем при необходимости для коррекции его орбиты и продлении срока службы.

Для понимания, что на Луне еще будут новые исследования — текущая на 5 мая 2019 года научная спутниковая группировка.

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

Источник

Adblock
detector