Меню

Состав глубинных слоев солнца

Солнце: характеристика, состав, строение, химический состав солнца

Состав атмосферы Солнца

При наблюдении в 1868 году полного солнечного затмения в спектре солнечной атмосферы была обнаружена яркая жёлтая линия, которой до этого не получали в спектрах земных веществ. Это вещество было названо гелием (гелиос — означает Солнце).

На Земле оно было найдено только через 30 лет. В 1942 году в атмосфере Солнца было обнаружено, правда, в небольшом количестве, золото. Всего на Солнце найдено пока 64 элемента таблицы Менделеева. Исследования при помощи спектрального анализа показали такое содержание элементов в солнечной атмосфере (по числу атомов):

Химический элемент Содержание в процентах
Водород • . Гелий .

• . Углерод . . Азот …. Кислород Натрий . . Магний . ♦ Алюминий . Кремний . . Сера …. Калий . • . 81,760 18,170 0,003000 0,010000 0,030000 0,000300 0,020000 0,000200 0,006000 0,003000 0,000010

Химический элемент Содержание в процентах
Кальций Титан . . Ванадий Хром . . Марганец Железо . Кобальт Никель • Медь . . Цинк . . 0,000300 0,000003 0,000001 0,000006 0,000010 0,000800 0,000004 0,000200 0,000002 0,000030

В настоящее время считается, что по массе (а не по числу атомов) Солнце состоит на 50 процентов из водорода и на 40 процентов из гелия.

На все другие элементы приходится всего 10 процентов.

Из чего состоит Солнце

Солнце представляет собой гигантский огненный шар, являющейся центром нашей звёздной системы. В прошлом считалось, что Солнце имеет идеально круглую форму, однако проведённые исследования показали, что наше Солнце состоит из многочисленных слоев.

Каждый из таких слоев выполняет определенную функцию. По своей структуре Солнце схоже с гигантской печью, которая отдает тепло всем близлежащим звёздам.

Состав Солнца

Солнце имеет стабильный состав и состоит на 24 % из гелия и на 74 % из водорода.

Также тут имеется 1 % кислорода и ряд других элементов, массовая доля которых не превышает 1 %.

Учёные в течение длительного времени изучали структуру и состав Солнца и пришли к выводу, что в результате взрыва появилась звезда, содержащая гелий и молекулярный водород. На Солнце происходит процесс ядерного синтеза, и водород постепенно превращается в гелий.

Для начала процесса синтеза необходима огромная температура и высокая масса планеты.

Слои солнца

Как было сказано выше, Солнце состоит из многочисленных слоев, температура в которых по мере их приближения к ядру неизменно увеличивается. Необходимо сказать, что гелий и водород в различных слоях имеет отличающиеся характеристики.

Ядро солнца

В центре планеты располагается ядро, показатели температуру внутри которого огромны. Именно тут и протекает реакция синтеза.

Из атомов водорода образуется гелий, а вместе с ним и свет с теплом. Такое тепло впоследствии доходит до Земли и является источником жизни на нашей планете. Установлено, что температура на Солнце составляет 36.000.000 градусов.

Экспериментальным путём удалось установить, что размер ядра составляет порядка 20 % всей длины радиуса Солнца. Несмотря на состояние электронов и нейронов, Солнце способно преобразовать атомы водорода в гелий.

Такая реакция получила название экзотермической.

При её протекании выделяется огромное количество тепла.

Зона радиации на Солнце

Находится солнечная радиационная зона у границы ядра и может достигать около 70 % всего радиуса Солнца.

В этой зоне находится горячее вещество, которое позволяет передавать тепловую энергию от ядра во внешний слой.

Происходящее в ядре Солнца реакция ядерного синтеза приводит к появлению различных радиационных фотонов. Впоследствии эти фотоны переходят через радиационный слой и выбрасываются Солнцем наружу. Учёные смогли установить, что на то чтобы преодолеть фотонам радиационный слой внутри Солнца им требуется около 200.000 лет.

Лишь после этого традиционный фотон выбрасываются наружу, и вместе с солнечным ветром блуждает по космосу. Чтобы понять мощность такого солнечного ветра можем сказать, что расстояние от Солнца до Земли ветер покрывает за 8 минут.

Необходимо сказать, что такие радиационные зоны имеются у множества звёзд. Их сила и размер зависит от величины звезды.

Конвективная зона

Этот слой располагается снаружи радиационной зоны. Необходимо сказать, что конвективная зона имеется практически у всех звёзд.

Состоит она из газа и плотных веществ. Именно тут происходит потеря тепла, и охлаждённый газ устремляется обратно к центру Солнца, что позволяет продолжить ядерный синтез.

Фотосфера

Фотосфера является единственным видимым непосредственно с Земли слоем Солнца. Установлено, что температура поверхности составляет 6000 К. Светиться фотосфера желто-белым светом, который хорошо виден с Земли.

У Солнца также имеется атмосфера, которую принято называть короной.

Этот слой мы можем видеть во время солнечных затмений.

Основные статьи: Солнце, Спектр звёзд, Характеристики звезды

Очень скоро после открытия спектрального анализа были получены спектрыСолнца и было доказано, что вещество Солнца состо­ит из тех же химических элементов, что и Земля.

Правда, по­сле того как появились спектры звёзд, ясности стало меньше. Удивительным было то, что гелий был открыт в спектре сол­нечной короны, а в спектре Солнца его обнаружить не уда­лось.

Удивляло разнообразие звёздных спектров. В одних из них не было ничего, кроме линий гелия, и даже ионизован­ного гелия, в других один водород, в третьих водорода нет, но есть множество линий самых разнообразных элементов.

Появление квантовой механики позволило разобраться во всем этом разнообразии.

Выяснилось, что особенности спект­ров определяются главным образом температурой того слоя, в котором образуются спектральные линии. При различных тем­пературах создаются условия для появления разных спект­ральных линий.

Когда удалось провести расчёты спектральных линий, смог­ли определить и истинный химический состав звёзд.

Он ока­зался удивительно одинаковым. Во всех звёздах, точнее во всей Вселенной, преобладающими элементами являются водо­род (около 65% по массе) и гелий (около 35% по массе). На долю всех остальных химических элементов приходится не бо­лее 1% по массе.

Химический состав вещества звёзд, несомненно, зависит от их возраста.

В самых старых звёздах количество тяжёлых (тя­желее гелия) химических элементов не превышает 0,1%, а в самых молодых доходит до 4%. Это очень важный факт для теории эволюции звёзд, галактик и Вселенной.

Спектральные линии водорода

Для простоты понимания можно рассмотреть появление в спек­тре звезды линий водорода.

Спектр водорода образуется при переходах электрона внутри атома с одного энергетического уровня на другой.

В частности, линии водорода появятся в спектре только тогда, когда в веществе значительное количе­ство атомов водорода имеет электрон на втором энергетичес­ком уровне. Чем больше таких атомов, тем сильнее наблюда­емая линия. Материал с сайта http://wikiwhat.ru

В звёздах с низкой температурой атмосферы (3000— 4000 K) атомов водорода с электроном на втором уровне нет.

Ведь, для того чтобы перевести электрон на второй уровень, он должен получить достаточно большую энергию при столк­новении с другим атомом или свободным электроном. Но при столь низких температурах атомов и электронов с такой боль­шой энергией просто очень мало.

При температурах около 10 000 K в большинстве атомов водорода электроны находятся именно на втором энергетиче­ском уровне и в спектре видны мощные линии водорода.

Читайте также:  Витамин при солнце при месяце

При ещё больших температурах водород уже ионизован и в спект­ре его линий нет, зато появляются линии гелия, и при тем­пературах около 35 000 K в спектре видны только линии ге­лия и ионизованного гелия.

Нужно сказать, что при низких температурах почти все атомы водорода имеют электрон на самом низком, основном уровне, их линии поглощения лежат в далёкой ультрафиоле­товой области спектра.

Солнце — своеобразные ядерный реактор. В нем постоянно протекают процессы ядерных реакций с выделением большого количества энергии, которая нас согревает.

Превращения идут от легких «нестабильных» элементов до тяжелых металлов. Уже сейчас ученые по спектральному анализу нашли в «атмосфере» Солнца пары железа. Отсюда они делают вывод что Солнцу осталось жить не более 5-7 миллиардов лет. Если я не ошибаюсь.

Солнце — это обычная звезда, ее возраст около 5 миллиардов лет, оно представляет собой огромный светящийся газовый шар, внутри которо­го протекают сложные процессы и в результате непрерывно выделяется энергия, диаметр его примерно в 109 раз превосходит диаметр Земли.

Внутри Солнца могло бы поместиться более миллиона небесных тел размером с 3емлю. ——————————————————————————— Как же устроено Солнце? В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато настолько, что давление в нем в 200 миллиардов раз выше, чем давление воздуха в земной атмосфере. Плотность вещества его (в 7 раз большая, чем у самого плотного земного металла) увеличивается к центру вместе с ростом давления и температуры.

Ядро имеет радиус не более четверти общего радиуса Солнца, а температура там достигает 15 миллионов градусов. В его объёме сосредоточена поло­вина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Энергия переносится из внутренних сло­ев Солнца путем излучения ближе к по­верхности, и процесс этот занимает около 10 милли­онов лет. ——————————————————————————— СОЛНЕЧНАЯ АТМОСФЕРА Земная атмосфера — это воздух, которым мы дышим, привычная для нас газовая оболочка Земли.

Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. Желтый свет Солнца приходит к нам из слоя солнечной атмосферы, который имеет толщину 500 км и на­зывается фотосферой. Под ним лежат внутренние области Солнца, а выше — прозрачные части наружной атмосферы.

Практически вся солнечная энергия, включая тепло и свет, падающие на Землю, приходит к нам от фотосферы, но первоначально производится в глубине Солнца. Толщина фотосферы составляет не более одной трёхтысячной до­ли солнечного радиуса, поэтому фотосферу иногда условно называют поверхностью Солнца.

Плотность газов в фотосфере в сотни раз меньше, чем у поверхности Земли, а температура фотосферы равна приблизительно 5500°С. При таких условиях, почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул. ——————————————————————————— Фотосфера имеет зернистую структуру, называемую грануляцией.

Диаметр каждой из гранул около 1000 км, они представля­ет собой поднявшийся на поверхность поток горячего вещества. Гранулы недолговечны. Они непрерывно видоизменяются, возникают и исчезают. Средняя продол­жительность жизни гранул составляет 10 минут. На фотосфе­ре часто можно увидеть относительно небольшие темные области — солнечные пятна. Они на 1500° холод­нее окружающей их фотосферы, температура которой достигает 5800°.

Из-за разницы температур с фотосферой, оно ка­жется совсем чёрным, хотя в действительности яркость его слабее только раз в десять эти пятна и кажутся при наблюдении в телескоп совершенно черными. С течением времени величина, и форма пятен сильно меняются.

Возникнув в виде едва заметной точки — поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Солнечные пятна часто образуют группы из нескольких больших и малых пятен, и такие группы могут занимать значительные области на солнечном диске. Картина группы всё время меняется, пятна рождаются, растут и распадаются.

Живут груп­пы пятен долго, иногда на протяже­нии двух или трёх оборотов Солнца (период вращения Солнца составляет примерно 27 суток) . Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы — хро­мосферу и

Это состояние называется ПЛАЗМА, причём в плазменном состянии на Солнце находятся молекулы ВОДОРОДА и ГЕЛИЯ.

74% водорода и 24% гелия.

Также, Солнце состоит из 1% кислорода, и оставшийся 1% — это такие элементы таблицы Менделеева, как: хром, кальций, неон, углерод, магний, сера, кремний, никель, железо

Источник

Что такое Солнце — описание, структура, образование, эволюция, орбита, исследование и факты

Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!

Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Читайте также:  Планеты солнечной системы последовательно от солнца

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица «Основные физические характеристики Солнца»

Средний диаметр 1 392 000 км
Длина экватора 4 370 000 км
Масса 1,9885•10 30 кг (примерно 333 тысячи масс Земли)
Площадь поверхности 6 триллионов км²
Объем 1,41•10 18 км³
Плотность 1,409 г/м³
Температура на поверхности 6000° С
Температура в центре звезды 15 700 000° С
Период вращения вокруг своей оси (на экваторе) 25,05 дней
Период вращения вокруг своей оси (на полюсах) 34,3 дня
Наклон оси вращения к эклиптике 7,25°
Минимальное расстояние до Земли 147 098 290 км
Максимальное расстояние до Земли 152 098 232 км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 27,96g
Светимость (мощность излучения) 3,828•10 26 Вт

Состав Солнца

Основными элементами, из которых состоит наша звезда, являются водород (73,5% солнечной) и гелий (24,9%). На все остальные элементы приходится примерно 1,5%.

Химический состав светила непостоянен – он меняется из-за превращений, происходящих во время термоядерных реакций. На заре своего существования Солнце почти полностью состояло из водорода. В ходе термоядерных реакций этот элемент превращается в гелий, поэтому его массовая доля падает. Гелий также превращается в более тяжелые элементы, однако, однако в целом его доля возрастает. Изменения химического состава звезд оказывают огромное влияние на процессы их эволюции.

Строение Солнца

Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца

Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

Читайте также:  Хочется солнце или солнца

В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

На сегодня Солнце располагается в рукаве Ориона. Нам повезло с расположением Солнечной системы в Млечном Пути. Дело в том, что скорость вращения нашей системы почти совпадает со скоростью вращения так называемых спиральных рукавов. Из-за этого наша система не попадает в них, хотя большинство других звезд периодически оказываются там. В спиральных рукавах очень сильное излучение, которое способно убить всё живое. Если бы Солнце находилось на другой орбите, оно периодически попадало бы в спиральные рукава, что приводило бы к «стерилизации» жизни на Земле.

Исследование Солнца

Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.

Интересные факты о Солнце

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Список использованных источников

Источник

Adblock
detector