Меню

Солнце является источником радиоволн

Солнце является источником радиоволн

1-2 млн. К. Поскольку волны разной длины приходят от разных слоев солнечной атмосферы, это позволяет исследовать св-ва хромосферы и короны по их радиоизлучению. В радиодиапазоне размер солнечного диска зависит от длины волны, на к-рой ведется наблюдение: наметровых волнах радиус Солнца больше, чем на сантиметровых, и в обоих случаях он больше радиуса видимого диска.

Зависимость интенсивности основных компонентов
радиоизлучения Солнца (их яркостной температуры)
от частоты (длины волны).

Р.С. включает тепловую и нетепловую составляющие. Тепловое радиоизлучение, обусловленное столкновениями электронов и ионов, движущихся с тепловыми скоростями, определяет нижнюю границу интенсивности радиоизлучения «спокойного» Солнца. Интенсивность радиоизлучения приятно характеризовать величиной яркостной температуры Tb. В случае излучения «спокойного» Солнца на сантиметровых волнах Tb

10 6 К (рис.). Естественно, что для теплового излучения величина Tb совпадает с кинетич. темп-рой слоя, откуда излучение выходит, если этот слой непрозрачен для данного излучения.

Представление об уровне радиоизлучения «спокойного» Солнца явл. идеализацией, в действительности же Солнце никогда не бывает совершенно спокойным: бурные процессы в солнечной атмосфере приводят к появлению локальных областей, радиоизлучение к-рых намного увеличивает наблюдаемую величину интенсивности по сравнению с уровнем «спокойного» Солнца. Образование на поверхности Солнца центров активности (факелов и пятен) сопровождает появлением над ними корональных конденсаций — плотных и горячих, как бы накрывающих активную область. Непосредственно над пятнами горячая корона как бы опускается до высот тыс. км, где напряженность магн. поля тыс. Э. Тогда электроны помимо излучения при соударениях с протонами ( тормозное излучение ) должны излучать и при движении вокруг магн. силовых линий ( магнитотормозное излучение ). Такое излучение обусловливает возникновение над активными областями ярких «радиопятен», к-рые появляются и исчезают примерно в то же время, что и видимые пятна. Поскольку пятна изменяются медленно (дни и недели), то столь же медленно меняется радиоизлучение корональных конденсаций. Пожтому его наз. медленно меняющимся компонентом. Этот компонент проявляется в основном в диапазоне волн от 2 до 50 см. В основном он тоже является тепловым, поскольку излучающие электроны имеют тепловое распределение скоростей ( Максвелла распределение ). Однако на определенной стадии развития активной области в пространстве между пятнами наблюдаеются источники, имеющие, по-видимому, нетепловую природу.

Иногда в области конденсаций наблюдаются внезапные усиления радиоизлучения на тех же волнах — сантиметровые всплески. Их длительность меняется от неск. мин до десятков мин или даже часов. Такие радиовсплески связаны с быстрым нагревом плазмы и ускорением частиц в области солнечной вспышки. Увеличение темп-ры и плотности газа в конденсации может быть причиной генерации сантиметровых всплесков с Tb

10 7 -10 8 К. Более интенсивные всплески на сантиметровых волнах обусловлены, по-видимому, циклотронным или плазменным излучением субрелятивистских электронов с энергией от десятков до сотен кэВ во вспышечных магн. арках.

Еще выше над корональными конденсациями также наблюдается усиленное радиоизлучение, но уже на метровых волнах ( м) — т.н. шумовые бури; они могут наблюдаться в течение чаосв и даже дней. Здесь много всплесков длительностью ок. 1 с (радиовсплески I типа) в узких интервалах частот. Это радиоизлучение связано с плазменной турбулентностью , к-рая возбуждается в короне над развивающимися активными областями, содержащими крупные пятна.

Выбросы быстрых электронов и др. заряженных частиц из области хромосферной вспышки вызывают ряд эффектов в радиизлучении активного Солнца. Самые обычные из них — радиовсплески III типа. Их характерной особенностью явл. то, что частота радиоизлучения меняется со временем, причем в каждый момент времени оно появляется сразу на двух частотах (гармониках), относящихся как 2:1. Всплеск начинается на частоте ок. 500 МГц ( см), а затем частота его обеих гармоник быстро уменьшается, примерно на 20 МГц в 1 с. Весь всплеск длится ок. 10 с. Радиовсплески III типа создаются потоком частиц, выброшенным вспышкой и движущимся через корону со скоростью \approx 0,3 с. Поток возбуждает колебания плазмы (плазменные волны) на частоте, к-рая определяется электронной плотностью в том месте короны, где поток в данный момент находится. А поскольку электронная плотность уменьшается при удалении от поверхности Солнца, то движение потока сопровождаетсяпостепенным уменьшением частоты плазменных волн. Часть энергии этих волн может превращаться в эл.-магн. волны с той же или удвоенной частотой, к-рые и регистрируются на Земле в виде радиовсплесков III типа с двумя гармониками. Как показали наблюдения на КА, потоки электронов, распространяясь в межпланетном пространстве, генерируют радиовсплески III типа вплоть до частот 30 кГц.

Вслед за радиовсплесками III типа в 10% случаев наблюдается радиоизлучение в широком интервале частот с максимумом интенсивности на частоте

Читайте также:  Сыны солнца называли себя

100 МГц ( м). Это излучение наз. радиовсплесками V типа, всплески длятся ок. 1-3 мин. По-видимому, они также обусловлены генерацией плазменных волн.

При очень сильных вспышках на Солнце возникают радиовсплески II типа тоже с меняющейся частотой. Их длительность примерно 5-30 мин, а диапазон частот 200-30 МГц. Порождается всплеск ударной волной , движущейся со скоростью v

10 8 см/с. Ударная волна возникает в результате расширения газа при сильной вспышке. На фронте этой волны образуются плазменные волны. Затем они, также как и в случае радиовсплесков III типа, частично переходят в эл.-магн. волны. Сходство радиовсплесков II и III типов подчеркивается и тем, что для всплесков II типа тоже характерно излучение на двух гармониках. При распространении в межпланетном пространстве вспышечная ударная волна продолжает генерировать радиовсплеск II типа на волнах гектометрового и километрового диапазонов.

Когда сильная ударная волна достигает верхней части короны, появляется непрерывное радиоизлучение в широком диапазоне частот — радиоизлучение IV типа. Оно похоже на радиовсплески V типа, но отличается от последних большей длительностью (иногда до неск. ч). Радиоизлучение IV типа генерируется субрелятивистскими электронами в плотных облаках плазмы с собственным магн. полем, к-рые выносятся в верхние слои короны. Обычно источники радиоизлучения IV типа поднимаются в короне со скоростью

неск. сотен км/с и прослеживаются до высот солнечных радиусов над фотосферой. Вспышки, с к-рыми связаны интенсивные сантиметровые всплески и радиоизлучение II и IV типов на метровых волнах, часто сопровождаются геофизич. эффектами — повышением интенсивности потоков протонов в околоземном космич. пространстве, прекращением радиосвязи на коротких волнах через полярные области, геомагнитными бурями и т.д. Радиоизлучение в широком диапазоне частот может быть использовано для краткосрочного прогнозирования этих эффектов.

Практически все указанные типы всплесков имеют разнообразную тонкую структуру. Перечисленными типами всплесков не ограничивается радиоизлучение Солнца, однако описанные выше компоненты явл. основными.

Лит.:
Каплан С.А., Элементарная радиоастрономия, М., 1966; Железняков В.В., Радиоизлучение Солнца и планет, М., 1964; Каплан С.А., Пикельнер С.Б., Цытович В.Н., Физика плазмы солнечной атмосферы, М., 1977; Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, пер. с англ., М., 1980.

Источник

Солнце является источником радиоволн

Из этой книги вы узнаете об интереснейших исследованиях Солнца, о таких загадочных явлениях, как солнечные пятна и полярное сияние, о солнечной энергии, магнитных бурях и солнечном ветре.

Для детей школьного возраста.

Книга: Солнце

Может ли Солнце помешать радиосвязи?

Может ли Солнце помешать радиосвязи?

Наша атмосфера имеет много слоев. Над тропосферой, где формируется погода, и стратосферой расположена ионосфера. Здесь из-за влияния солнечного излучения находится много заряженных частиц. Ионосфера имеет три слоя, которые обозначают буквами D, Е и F. Слой D лежит на высотах от 50 до 90 км, Е растянулся от 90 до 130 км, a F — от 130 почти до 1000 км. Слои Е и F — это своеобразное «зеркало» для радиоволн длинного, среднего и коротковолнового диапазонов. Они отражают посылаемые с поверхности нашей планеты радиоволны обратно на Землю. Благодаря этому можно осуществлять радиосвязь на большом расстоянии. Чем больше излучения посылает нам Солнце, тем больше заряженных частиц появляется в ионосфере.

«Радиозеркало» ионосферы действует тогда почти безукоризненно. Иногда случается в такое время поймать радиотелефонный разговор нью-йоркского таксиста в Европе. Под слоями, отражающими радиоволны, лежит слой D, который в отличие от них ослабляет радиоволны. Временами этот поглощающий слой из-за усиленного рентгеновского излучения Солнца становится столь непроницаемым, что почти ни один радиосигнал не может проникнуть к отражающим слоям ионосферы. Международная радиосвязь может быть из-за этого значительно нарушена.

Источник

Радиоизлучение Солнца

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Радиоизлучение Солнца» в других словарях:

РАДИОИЗЛУЧЕНИЕ СОЛНЦА — электромагнитное излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от нижней хромосферы до солнечной короны. Различают тепловое радиоизлучение спокойного Солнца; излучение активных областей в атмосфере над… … Большой Энциклопедический словарь

радиоизлучение Солнца — электромагнитное излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от нижней хромосферы до солнечной короны. Различают тепловое радиоизлучение «спокойного» Солнца; излучение активных областей в атмосфере над… … Энциклопедический словарь

РАДИОИЗЛУЧЕНИЕ СОЛНЦА — эл. магп. излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от ниж. хромосферы до солнечной короны. Различают тепловое радиоизлучение спокойного Солнца; излучение активных областей в атмосфере над солнечными… … Естествознание. Энциклопедический словарь

Читайте также:  Моя казачка солнца краше ты моя казачка мой надежный тыл

Служба Солнца — систематические наблюдения Солнца (См. Солнце) на многих астрономических обсерваториях мира с целью сбора наблюдательного материала, относящегося ко всем проявлениям солнечной активности (См. Солнечная активность). В программу С. С.… … Большая советская энциклопедия

Космическое радиоизлучение — излучение галактических и метагалактических объектов в радиодиапазоне длин волн. Иногда к К. р. относят также радиоизлучение Солнца и планет. К. р. открыто в 1931 американским радиофизиком К. Янским на волне около 15 м. Несмотря на весьма … Большая советская энциклопедия

АРХЕОАСТРОНОМИЯ — Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад.… … Энциклопедия Кольера

Радиоастрономия — раздел астрономии, в котором небесные объекты Солнце, звёзды, галактики и др. исследуются на основе наблюдений излучаемых ими радиоволн в диапазоне от долей мм до несколкьих км. Иногда к Р. относят также и радиолокационную астрономию (См … Большая советская энциклопедия

РАДИОАСТРОНОМИЯ — раздел астрономии, изучающий космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа.… … Энциклопедия Кольера

Солнечная радиация — излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

Солнце — центральное тело Солнечной системы (См. Солнечная система), представляет собой раскалённый плазменный шар; С. ближайшая к Земле Звезда. Масса С. 1,990 1030 кг (в 332 958 раз больше массы Земли). В С. сосредоточено 99,866% массы Солнечной… … Большая советская энциклопедия

Источник

Школьная Энциклопедия

Nav view search

Навигация

Искать

Как распространяются радиоволны

Подробности Категория: Радио Опубликовано 12.07.2015 20:33 Просмотров: 8450

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина — от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция, или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Читайте также:  Что будет с землей если не будет солнца летом

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

где f – частота волны;

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны: сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные, или километровые, волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние, или гектометровые, волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые, или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.

Источник

Adblock
detector