Меню

Солнце является источником инфракрасного

Солнце является источником инфракрасного

+7 (351) 211-29-41 (городской)

+7 (351) 211-29-42 (факс)

Источники инфракрасного излучения

Мощным источником инфракрасного излучения является Солнце, около 50% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на инфракрасное излучение .

При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только инфракрасное излучение. Мощным источником инфракрасного излучения является угольная электрическая дуга с температурой

3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры

950 К. Для лучшей концентрации инфракрасного излучения такие нагреватели снабжаются рефлекторами. В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники инфракрасного излучения: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др.

Излучение некоторых оптических квантовых генераторов — лазеров также лежит в инфракрасной области спектра; например, излучение лазера на неодимовом стекле имеет длину волны 1,06 мкм, лазера на смеси неона и гелия — 1,15 мкм и 3,39 мкм, лазера на углекислом газе — 10,6 мкм, полупроводникового лазера на InSb — 5 мкм и др. Приёмники инфракрасного излучения основаны на преобразовании энергии инфракрасного излучения в другие виды энергии, которые могут быть измерены обычными методами.

Существуют тепловые и фотоэлектрические приёмники инфракрасного излучения В первых поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента приёмника, которое и регистрируется. В фотоэлектрических приёмниках поглощённое инфракрасное излучение приводит к появлению или изменению электрического тока или напряжения. Фотоэлектрические приёмники, в отличие от тепловых, являются селективными приёмниками, т. е. чувствительными лишь в определённой области спектра. Специальные фотоплёнки и пластинки — инфрапластинки — также чувствительны к инфракрасному излучению (до l = 1,2 мкм), и потому в инфракрасном излучении могут быть получены фотографии.

Применение Инфракрасного излучения

Инфракрасное излучение находит широкое применение в научных исследованиях, при решении большого числа практических задач, в военном деле и пр. Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива. Благодаря различию коэффициентов рассеяния, отражения и пропускания тел в видимом и инфракрасном излучения фотография, полученная в инфракрасном излучении, обладает рядом особенностей по сравнению с обычной фотографией. Например, на инфракрасных снимках часто видны детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение применяется для сушки и нагрева материалов и изделий при их облучении, а также для обнаружения скрытых дефектов изделий.

На основе фотокатодов, чувствительных к Инфракрасному излучению (для l

Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи.

Источник

Как работает и греет Солнце

Солнце — главный источник энергии на Земле. Без него невозможным было бы существование жизни. И хотя все буквально вертится вокруг Солнца, мы очень редко задумываемся над тем, как работает наша звезда.

Структура Солнца

Чтобы понять, как работает Солнце, сначала нужно разобраться в его структуре.

  • Ядро.
  • Зона лучистого переноса.
  • Конвективная зона.
  • Атмосфера: фотосфера, хромосфера, корона, солнечный ветер.

Диаметр солнечного ядра составляет 150—175 000 км, около 20—25% солнечного радиуса. Температура ядра достигает 14 млн градусов по Кельвину. Внутри постоянно происходят термоядерные реакции с образованием гелия. Именно в ядре в результате данной реакции выделяется энергия, а так же тепло. Остальная часть Солнца нагрета этой энергией, она проходит сквозь все слои до фотосферы.

Зона лучистого переноса находится над ядром. Энергия переносится с помощью излучения фотонов и их поглощения.

Над зоной лучистого переноса находится конвективная зона. Здесь перенос энергии осуществляется не переизлучением, а переносом вещества. С высокой скоростью более холодное вещество фотосферы проникает в конвективную зону, а излучение из зоны лучистого переноса поднимается на поверхность — это и есть конвекция.

Фотосфера — это видимая поверхность Солнца. Из этого слоя исходит большая часть видимого излучения. В фотосферу уже не проникает излучение более глубоких слоев. Средняя температура слоя достигает 5778 К.

Хромосфера окружает фотосферу, она имеет красноватый оттенок. Из поверхности хромосферы постоянно происходят выбросы — спикулы.

Последняя внешняя оболочка нашей звезды — корона, состоящая из энергетических извержений и протуберанцев, образующих солнечный ветер, распространяющийся к самым дальним уголкам солнечной системы. Средняя температура короны — 1—2 млн К, но есть участки с 20 млн К.

Солнечный ветер — это поток ионизированных частиц, распространяющийся до границ гелиосферы со скоростью около 400 км/с. Многие явления на Земле связаны с солнечным ветром, например, полярное сияние и магнитные бури.

Солнечное излучение


Плазма Солнца обладает высокой электропроводностью, что способствует появлению электрических токов и магнитных полей.

Солнце — самый сильный излучатель электромагнитных волн в мире, который дает нам:

  • ультрафиолетовые лучи;
  • видимый свет — 44% солнечной энергии (преимущественно желто-зеленый спектр);
  • инфракрасные лучи — 48%;
  • рентгеновское излучение;
  • радиационное излучение.

Лишь 8% энергии отводится на ультрафиолетовое, рентгеновское и радиационное излучение. Видимый свет расположен между лучами инфракрасного и ультрафиолетового спектра.

Также Солнце является мощным источником радиоволн нетепловой природы. Помимо всевозможных электромагнитных лучей излучается постоянный поток частиц: электронов, протонов, нейтрино и так далее.

Все виды излучения оказывают свое влияние Землю. Именно это влияние мы ощущаем.

Воздействие УФ лучей

Ультрафиолетовые лучи воздействуют на Землю и все живые существа. Благодаря им существует озоновый слой, так как УФ-лучи разрушают кислород, который модифицируется в озон. Магнитное поле Земли в свою очередь формирует озоновый слой, который, как ни парадоксально, ослабляет силу воздействия УФ.

На живые организмы и окружающую среду ультрафиолет влияет многогранно:

  • способствует выработке витамина D;
  • обладает антисептическими свойствами;
  • вызывает появление загара;
  • усиливает работу кроветворных органов;
  • повышает свертываемость крови;
  • увеличивается щелочной резерв;
  • дезинфицирует поверхности предметов и жидкости;
  • стимулирует обменные процессы.

Именно ультрафиолетовое излучение способствует самоочищению атмосферы, устраняет смог, частицы дыма и пыли.

В зависимости от широты сила воздействия УФ излучения сильно изменяется.

Воздействие ИК лучей: почему и как Солнце греет

Все тепло на Земле — это инфракрасные лучи, которые появляются благодаря термоядерному синтезу водорода с образованием гелия. Эта реакция сопровождается огромным выбросом лучистой энергии. До земли доходит порядка 1000 Ватт на квадратный метр. Именно за это ИК излучение очень часто называют тепловым.

Удивительно, но Земля выступает в роли инфракрасного излучателя. Планета, а также облака поглощают ИК лучи, а затем переизлучают эту энергию обратно в атмосферу. Такие вещества как водяной пар, капли воды, метан, диоксид углерода, азот, некоторые соединения фтора и серы излучают ИК лучи во всех направлениях. Именно благодаря этому имеет место парниковый эффект, который поддерживает поверхность Земли в постоянно подогретом состоянии.

Инфракрасные лучи не только нагревают поверхности предметов и живых существ, но и оказывают другое влияние:

  • обеззараживают;
  • улучшают метаболизм;
  • стимулируют кровообращение;
  • снимают болевые ощущения;
  • нормализуют водно-солевой баланс;
  • укрепляют иммунитет.

Почему зимой Солнце греет слабо

Так как Земля вращается вокруг Солнца с некоторым наклоном оси, в разное время года происходит отклонение полюсов. В первой половине года Северный полюс повернут к Солнцу, в во второй — Южный. Соответственно, меняется угол воздействия солнечной энергии, а также мощность.

То полушарие, которое повернуто к Солнцу, получает больше электромагнитных и других лучей, нагревается сильнее — наступает лето. Полушарие, которое отвернуто от солнца получает падающие вскользь лучи — наступает зима. Из-за измененного угла падения поверхность и атмосфера прогреваются слабее.

Из-за изменения угла наклона зимой Солнце проходится низко над горизонтом. Соответственно, его лучи проходят длинный путь сквозь атмосферу. Зимой тепловая энергия растрачивается сильнее, за счет того что инфракрасные лучи встречают на своем пути и обогревают в 4-6 раз больше воздуха. До поверхности планеты доходит значительно меньше тепла, поэтому кажется, что Солнце почти не греет.

Так как прозрачность воздуха достаточно высока, видимая часть солнечного излучения доходит в любое время года практически в неизменном количестве.

Источник

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Читайте также:  Посмотри как солнце встает

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Источник

Солнечная радиация и её влияние на организм человека и климат

Что такое Солнце? В масштабах видимой Вселенной это – всего лишь крошечная звезда на окраине галактики, которая носит название Млечный Путь. Но для планеты Земля Солнце – не просто раскаленный сгусток газа, а источник тепла и света, необходимый для существования всего живого.
С доисторических времен дневное светило было объектом поклонения, его движение по небесной тверди ассоциировалось с проявлением божественных сил. Исследования Солнца и его излучения начались еще до принятия гелиоцентрической модели Николая Коперника, над его загадками ломали головы величайшие умы древних цивилизаций.

Технический прогресс подарил человечеству возможность изучить не только процессы внутри и на поверхности Солнца, но и изменения земного климата под его воздействием. Статистические данные позволяют дать четкий ответ на вопрос, что такое солнечная радиация, в чем она измеряется и определить ее влияние на живые организмы, населяющие планету.

Что называют солнечной радиацией

Природа солнечного излучения оставалась неясной до тех пор, пока в начале ХХ века выдающийся астроном Артур Эддингтон не предположил, что источником колоссальной солнечной энергии являются реакции термоядерного синтеза, которые происходят в его недрах. Температура вблизи его ядра (около 15 млн градусов) является достаточной для того, чтобы протоны преодолевали силу взаимного отталкивания и в результате столкновения образовывали ядра Гелия.

Впоследствии ученые (в частности – Альберт Эйнштейн) обнаружили, что масса ядра Гелия несколько меньше суммарной массы четырех протонов, из которых оно образуется. Этот феномен получил название дефекта масс. Проследив взаимосвязь массы и энергии, ученые обнаружили, что этот излишек выделяется в виде гамма-квантов.

При прохождении пути от ядра к поверхности Солнца через слои составляющих его газов, гамма-кванты дробятся и превращаются в электромагнитные волны, среди которых находится и видимый человеческому глазу свет. Этот процесс занимает около 10 млн лет. А для достижения солнечного излучения земной поверхности требуется всего 8 минут.

Солнечная радиация включает в себя электромагнитные волны с широким диапазоном и солнечный ветер, который представляет собою поток лёгких частиц и электронов.

Видимое излучение

Видимое излучение в солнечном спектре имеет интенсивность среднего уровня. Количественные оценки потока и вариации его спектрального распределения в видимом и ближнем инфракрасном диапазонах электромагнитного спектра представляют большой интерес при изучении солнечно-наземных воздействий. Диапазон от 380 до 780 нм виден невооруженным взглядом.

Причина в том, что основная часть энергии солнечной радиации сосредоточена в этом диапазоне и она определяет тепловое равновесие атмосферы Земли. Солнечный свет является ключевым фактором в процессе фотосинтеза, используемого растениями и другими автотрофными организмами для преобразования световой энергии в химическую, которая может быть использована в качестве топлива для организма.

Какие существуют виды солнечного излучения и его характеристики

На границе атмосферы Земли интенсивность солнечного излучения – постоянная величина. Энергия Солнца дискретна и переносится порциями (квантами) энергии, но их корпускулярный вклад относительно мал, поэтому солнечные лучи рассматриваются как электромагнитные волны, которые распространяются равномерно и прямолинейно.

Основной волновой характеристикой является длина волны, с помощью которой выделяют виды излучения:

  • радиоволны;
  • инфракрасное (тепловое);
  • видимый (белый) свет;
  • ультрафиолетовое;
  • рентгеновское;
  • гамма-лучи.

Солнечная радиация представлена инфракрасным (ИК), видимым (ВС) и ультрафиолетовым (УФ) излучением в соотношении 52%, 43% и 5% соответственно. Количественной мерой излучения Солнца считается энергетическая освещенность (плотность энергетического потока) – лучистая энергия, поступающая в единицу времени на единицу поверхности.

Основные спектры солнечного излучения

Солнце обладает разным излучением: от рентгеновских лучей до радиоволн. Солнечная энергия — это свет и тепло. Его состав:

  • 6-7 % ультрафиолетового света,
  • около 42 % видимого света,
  • 51 % ближнего инфракрасного.

Мы получаем солнечной энергии при интенсивности 1 киловатт на квадратный метр на уровне моря в течение многих часов в день. Около половины излучения находится в видимой коротковолновой части электромагнитного спектра. Другая половина — в ближней инфракрасной, и немного в ультрафиолетовом отделе спектра.

Распределение солнечной радиации по земной поверхности

Большая часть излучения поглощается атмосферой земли и нагревает ее до привычной для живых организмов температуры. Озоновый слой пропускает всего 1% ультрафиолетовых лучей и служит щитом от более агрессивного коротковолнового излучения.

Атмосфера поглощает около 20 % солнечных лучей, 30% рассеивает в разные стороны. Таким образом, на земную поверхность попадает только половина лучистой энергии, названная прямой солнечной радиацией.

На интенсивность прямого солнечного излучения влияет несколько факторов:

  • угол падения солнечных лучей (географическая широта);
  • расстояние от точки падения до Солнца (время года);
  • характер отражающей поверхности;
  • прозрачность атмосферы (облачность, загрязненность).

Рассеянное и прямое излучение составляют суммарную солнечную радиацию, интенсивность которой измеряется в калориях на единицу поверхности. Понятно, что солнечная радиация оказывает влияние только в дневное время суток и распределяется по земной поверхности неравномерно. Ее интенсивность увеличивает по мере приближения к полюсам, однако снега отражают большую долю лучистой энергии, в результате чего воздух не нагревается. Поэтому суммарный показатель уменьшается по мере отдаления от экватора.

Солнечная активность формирует климат Земли и воздействует на процессы жизнедеятельности организмов, которые ее населяют. На территории стран СНГ (в северном полушарии) в зимнее время года преобладает рассеянное излучение, в летнее – прямое.

Влияние солнечной радиации на климат Земли

Решающее влияние на климат Земли оказывает инфракрасная составляющая солнечной радиации.

Понятно, что это происходит лишь в то время, когда Солнце находится над горизонтом. Это влияние зависит от удалённости нашей планеты от Солнца, которое изменяется в течение года. Орбита Земли представляет собой эллипс, внутри которого и находится Солнце. Совершая свой годичный путь вокруг Солнца, Земля то удаляется от своего светила, то приближается к нему.

Кроме изменения расстояния, количество поступающей на землю радиации, определяется наклоном земной оси к плоскости орбиты (66,5°) и вызываемой ею сменой времён года. Летом она больше, чем зимой. На экваторе этого фактора нет, но по мере роста широты места наблюдения, разрыв между летом и зимой становится значительным.

В процессах, происходящих на Солнце, имеют место всевозможные катаклизмы. Их воздействие отчасти нивелировано огромными расстояниями, защитными свойствами земной атмосферы и магнитным полем Земли.

Инфракрасное излучение и его роль в жизни человечества

Солнечная радиация представлена преимущественно инфракрасным излучением, невидимым человеческому глазу. Именно оно нагревает земную почву, которая впоследствии отдает тепло атмосфере. Таким образом, поддерживается оптимальная для жизни на Земле температура и привычные климатические условия.

Кроме Солнца источниками инфракрасного излучения являются все нагретые тела. По этому принципу работают все нагревательные приборы и устройства, которые позволяют разглядеть более или менее нагретые предметы в условиях плохой видимости.

То, что человек не в состоянии воспринимать инфракрасный свет, не уменьшает его влияния на организм. Этот вид излучения нашел применение в медицине благодаря таким свойствам:

  • расширение кровеносных сосудов, нормализация кровотока;
  • увеличение количества лейкоцитов;
  • лечение хронических и острых воспалений внутренних органов;
  • профилактика кожных заболеваний;
  • удаление коллоидных рубцов, лечение незаживающих ранений.
Читайте также:  Как называется планета находящаяся за солнцем

Инфракрасные термографы позволяют вовремя выявить заболевания, не поддающиеся диагностике с помощью других методов (тромбы, раковые опухоли и т.д.). Инфракрасное излучение является своеобразным «противоядием» от негативного ультрафиолета, поэтому его целительные свойства применяются для восстановления здоровья людей, длительное время пребывавших в космическом пространстве.

Механизм воздействия инфракрасных лучей полностью не изучен и, как и любой вид радиации, при неграмотном использовании может нанести вред здоровью человека. Противопоказано лечение с помощью ИК-лучей при наличии гнойных воспалений, кровотечений, злокачественных опухолей, недостаточности мозгового кровообращения и сердечно-сосудистой системы.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего – на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой – на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения – долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Спектральный состав и свойства видимого света

Световые пучки распространяются прямолинейно и не накладываются друг на друга, что порождает справедливый вопрос, почему окружающий мир поражает многообразием различных оттенков. Секрет заключается в основных свойствах света: отражении, преломлении и поглощении.

Доподлинно известно, что предметы не испускают свет, он частично поглощается ими и отражается под разным углом в зависимости от частоты. Человеческое зрение эволюционировало веками, однако сетчатка глаза способна воспринимать только ограниченный диапазон отраженного света в узком промежутке между инфракрасным и ультрафиолетовым излучением.

Изучение свойств света породило не только отдельную отрасль физики, но и ряд ненаучных теорий и практик, основанных на влиянии цвета на психическое и физическое состояние индивидуума. Оперируя этими знаниями, человек оформляет окружающее пространство в наиболее приятном для глаз цвете, что делает быт максимально комфортным.

Отражение солнечной радиации. Поглощенная радиация. Альбедо Земли

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Итак, из общего потока суммарной радиации I sinh+i

отражается от земной поверхности часть его
(I sinh + i) А
, где
А
— альбедо поверхности. Остальная часть суммарной радиации
(I sinh + i)*(1-А)
поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы в общем заключается в пределах 10-30%; в случае влажного чернозема оно снижается до 5%, а в случае сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова — леса, луга, поля — заключается в пределах 10-25%. Для свежевыпавшего снега альбедо 80-90%, для давно лежащего снега — около 50% и ниже. Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов при высоком солнце до 70% при низком солнце; оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей 5-10%. В среднем альбедо поверхности мирового океана 5-20%. Альбедо верхней поверхности облаков — от нескольких процентов до 70-80% в зависимости от типа и мощности облачного покрова; в среднем же оно 50-60%.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть рассеянной радиации, около одной трети ее. Отношение этой уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного альбедо Земли или просто альбедо Земли.

Планетарное альбедо Земли оценивается в 35-40%; по-видимому, оно ближе к 35%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Ультрафиолетовое излучение и его влияние на организм человека

Ультрафиолетовый спектр солнечного света состоит из длинных, средних и коротких волн, которые отличаются физическими свойствами и характером воздействия на живые организмы. Ультрафиолетовые лучи, которые относятся к длинноволновому спектру, преимущественно рассеиваются в атмосфере и не достигают поверхности земли. Чем меньше длина волны, тем глубже проникает ультрафиолет в кожные покровы.

Ультрафиолетовое излучение необходимо для поддержания жизни на Земле. На организм человека УФ-лучи оказывают следующее влияние:

  • насыщение витамином D, необходимым для формирования костной ткани;
  • профилактика остеохондроза и рахита у детей;
  • нормализация обменных процессов и синтеза полезных ферментов;
  • активация регенерации тканей;
  • улучшение кровообращения, расширение сосудов;
  • повышение иммунитета;
  • снятие нервного возбуждения за счет стимуляции выработки эндорфинов.

Несмотря на объемный перечень положительных качеств, солнечные ванны не всегда эффективны. Длительное пребывание на солнце в неблагоприятное время или в периоды аномально высокой солнечной активности сводит на нет полезные свойства УФ-лучей.

Ультрафиолетовое облучение в больших дозах имеет результат прямо противоположный ожидаемому:

  • эритему (покраснение кожи) и солнечные ожоги;
  • гиперемию, отечность;
  • повышение температуры тела;
  • головные боли;
  • нарушение функций иммунной и центральной нервной систем;
  • снижение аппетита, тошнота, рвота.

Эти признаки являются симптомами солнечного удара, при котором ухудшение состояния человека может происходить незаметно. Порядок действий при солнечном ударе:

  • переместить человека из зоны воздействия прямых солнечных лучей в прохладное место;
  • положить на спину и поднять ноги на возвышение, чтобы нормализовать кровообращение;
  • ополоснуть лицо и шею прохладной водой, желательно сделать компресс на лоб;
  • обеспечить возможность свободно дышать и избавить от тесной одежды;
  • в течение получаса дать напиться небольшим количеством чистой холодной воды.

В тяжелых случаях при потере сознания необходимо вызвать бригаду скорой помощи и по возможности привести пострадавшего в чувство. Медицинская помощь больному заключается в экстренном введении глюкозы или аскорбиновой кислоты внутривенно.

Как влияет на организм?

Излучаемая Солнцем радиация состоит из ультрафиолетовой, видимой и инфракрасной частей. В них содержится различная энергия и поэтому они могут по-разному влиять на человека:

  1. Тепловой эффект. Он появляется из-за влияния инфракрасного излучения и сопровождается расширением сосудов, которое приводит к улучшению кровотока. В результате теплового эффекта и людей расслабляются мышцы и лучше усваиваются биологически активные микроэлементы.
  2. Фотохимическое действие. Видимое солнечное излучение активизирует работу зрительного органа, благодаря чему человек может познавать окружающий мир. Поступающий свет от Солнца благоприятно влияет на работоспособность коры мозга и нормализует биоритмы человека. Нарушение биологических ритмов может привести к ухудшению самочувствия, бессоннице и развитию депрессии.
  3. Ультрафиолетовое воздействие. Недостаток ультрафиолета может негативно сказаться на здоровье людей. Ослабляется иммунная система, замедляется процесс вырабатывания жизненно важных веществ, обостряются хронические болезни и развиваются психические расстройства.

Встречное излучение

Атмосфера нагревается, поглощая как солнечную радиацию (хотя в сравнительно небольшой доле, около 15% всего ее количества, приходящего к Земле), так и собственное излучение земной поверхности. Кроме того, она получает тепло от земной поверхности путем теплопроводности, а также при испарении и последующей конденсации водяного пара. Будучи нагретой, атмосфера излучает сама. Так же как и земная поверхность, она излучает невидимую инфракрасную радиацию примерно в том же диапазоне длин волн.

Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением (Еа); встречным потому, что оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает это встречное излучение почти целиком (на 90-99%). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации.

Читайте также:  Лучик солнца мы дождались тебя

Основной субстанцией в атмосфере, поглощающей земное излучение и посылающей встречное излучение, является водяной пар. Он поглощает инфракрасную радиацию в большой области спектра — от 4,5 до 80 мк, за исключением интервала между 8,5 и 11 мк.

Углекислота сильно поглощает инфракрасную радиацию, но лишь в узкой области спектра, озон — слабее и также в узкой области спектра.

Солнечная радиация и ее биологическое действие. Световой климат

Солнце является основным источником энергии на Земле. Солнечная радиация подразделяется на 3 диапазона:

1 Ультрафиолетовое излучение

— от 10 до 400 нм

— от 400 до 760 нм

3. Инфракрасное излучение —

от 670 до 3400 нм Интенсивность солнечной радиации на границе земной атмосферы

называется солнечной постоянной.

Ее величина колеблется в зависимости от ряда астрономических причин, но в среднем составляет
1.94 кал/см /мин.
На ультрафиолетовую часть спектра на границе атмосферы приходится 7% энергии, на видимый свет — 46% и 47% на инфракрасное излучение.

При прохождении через атмосферу интенсивность солнечной радиации снижается, что определяется

1. Углом падения лучей, который в свою очередь зависит от

а) Широты местности

в) Времени суток

2. Массой воздуха, через который проходят лучи

3. Степенью загрязнения атмосферы

При прохождении солнечных лучей через атмосферу изменяется не только интенсивность излучения, но и его спектр. При угле солнца над горизонтом 40° ультрафиолетовое излучение составляет только 1 %, видимый свет — 40%, инфракрасное излучение — 52%. Когда угол опускается

до 5° ультрафиолетовое излучение исчезает вообще, 28% приходится на видимый свет и 72% на инфракрасное излучение.

Солнечная радиация достигает Земли в виде прямых и рассеянных лучей. Рассеяние происходит от частиц, имеющихся в воздухе, водяных паров и тд. В наибольшей степени рассеиваются ультрафиолетовые лучи. Существует общее правило, согласно которому чем короче волна света, тем интенсивнее он рассеивается.

Часть солнечного излучения поглощается, а часть отражается. Отношение отраженной радиации к падающей называется альбедо

и выражается в процентах. Величина альбедо непигментированной кожи человека равна 35%, лес отражает только 12%, чистый снег имеет наиболее высокое альбедо — 90 %. Таким образом, надо помнить, что солнечные ожоги могут возникать и вследствие действия отраженного света.

Ультрафиолетовое излучение представляет собой часть солнечной радиации с длиной волны от 10 до 400 нм.

Ультрафиолетовые лучи с длинной волны от 10 до 290 нм не достигают земной поверхности. Свойства ультрафиолетового излучения с разной длинной волны неодинаковы. Наиболее короткие волны (от 10 до 200 нм) по своему действию приближаются к ионизирующему излучению. Эта область получила название озонирующей.

Энергия ультрафиолетового излучения с длинной волны от 200 до 400 нм не достаточна для возбуждения атомов, здесь преобладают
фотохимические реакции.
Для нас наибольшее значение имеет часть спектра от 200 до 400 нм. Эту зону делят на

С — от 200 до 280 нм

от 280 до 320 нм

— от 320 до 400 нм

Область Сназывают бактерицидной. Преимущественным действием ультрафиолетового излучения в этой области является бактерицидное действие, что широко используется для обеззараживания воды, воздуха и тд. Бактерицидным действием обладают также области В и А, но в значительно меньшей степени.

Область Вназывается эритемной, т.к. под влиянием ультрафиолетового излучения этой области возникает эритема. В области В также очень выражено витаминообразующее действие.

Наиболее мощным ви-таминообразующим эффектом обладает область с длинной волны от 265 до 315 нм.

Область Аполучила название загарной.

Под воздействием ультрафиолетового излучения этой области возникает загар — образование меланина, что представляет собой защитную реакцию организма.

Роль УФИочень велика. Оно повышает тонус организма, умственную и физическую работоспособность, сопротивляемость к инфекциям, стимулирует деятельность желез внутренней секреции, кроветворение.

Под действием ультрафиолетового излучения образуются витамин D, гистамин, тканевые гормоны, пигменты.

Недостаток ультрафиолетового излученияотрицательно сказывается на организме и может приводить к: Рахиту у детей, Снижению общей иммунологической реактивности, Снижению умственной и физической работоспособти, Повышению заболеваемости, Нарушению обмена кальция (из-за нехватки витамина D) — остеопо-роз, остеомаляция, кариес

Не следует, однако, забывать и об отрицательном действии ультрафиолетового излучения, которому в последнее время уделяется пристальное внимание.

Инфракрасное излучение представляет собой часть солнечной радиации в диапозоне длин волн от 670 до 3400 нм.

Инфракрасное изучение оказывает прежде всего тепловое действие. Кроме того, в настоящее время установлен целый ряд биологических эффектов.

Тепловой эффект определяется прежде всего длинной волны. Длинноволновая часть инфракрасного излучения (более 1400 нм) задерживается поверхностными слоями кожи, благодаря чему происходит их разогрев, появляется чувство жжения. Вследствие такого эффекта длинноволновая часть излучения называется «палящими лучами».
Придостаточной интенсивности излучения возможна эритема и ожог.
Коротковолновая часть излучения проникает в ткани на глубину около 3 см, в результате чего может вызывать разогрев тканей, в том числе мозговых оболочек. Именно воздействием коротковолнового инфракрасного излучения обусловлено такое явление как солнечный удар.

Кроме того, оно вызывает перегрев и помутнение хрусталика, что ведет к развитию катаракты.

в ответ на действие инфракрасного излучения характеризуются гиперемией, повышением газообмена, усилением выделительной функции почек, изменением функционального состояния нервной системы.

видимое излучение — является единственным раздражителем глаза, вызывающим зрительные ощущения, обеспечивающие зрительное восприятия мира. Однако действие света на глаз не ограничено только аспектом видения — возникновением на сетчатке глаза изображений и формированием зрительных образов. Помимо основного процесса видения, свет вызывает и другие важные реакции рефлекторного и гуморального характера. Воздействуя через адекватный рецептор — орган зрения, он вызывает импульсы, распространяющиеся по зрительному нерву до оптической области больших полушарий головного мозга (в зависимости от интенсивности) возбуждает или угнетает центральную нервную систему, перестраивая физиологические и психические реакции, изменяя общий тонус организма, поддерживая деятельное состояние. Видимый свет оказывает еще влияние на иммунные и аллергические реакции, а также на различные показатели обмена, изменяет уровень аскорбиновой кислоты в крови, в надпочечных железах и мозге. Он действует и на сердечно-сосудистую систему. В последнее время установлено также и гуморальное влияние нервного возбуждения, возникающее при световом раздражении глаза. Хотя наибольшее количество реакций вызываемых светом в организме человека, имеют положительный эффект, все же имеет место и вредные аспекты действия видимого света — А именно различные механизмы световых повреждений глаз.

Световой климат — Режим естественного освещения земной поверхности, характеризующийся интенсивностью и спектральным составом. Он создается преимущественно прямым и рассеянным солнечным светом; второстепенную роль играет свет луны и звезд и свечение самой атмосферы. Интенсивность и продолжительность освещения, определяющие С. К., зависят прежде всего от географической широты и времени года, т. е. от факторов, определяющих приток солнечной радиации к земле. С. К. зависит также и от степени поглощения и рассеяния солнечного света атмосферой с ее меняющимся количеством водяного пара, пыли и других примесей, и от облачности.

Эффективное излучение

Встречное излучение всегда несколько меньше земного. Поэтому ночью, когда солнечной радиации нет и к земной поверхности приходит только встречное излучение, земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Эту разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективным излучением (Ее

Эффективное излучение представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности ночью.

Интенсивность эффективного излучения в ясные ночи составляет около 0,10-0,15 кал/см2 мин на равнинных станциях умеренных широт и до 0,20 кал/см2 мин на высокогорных станциях. С возрастанием облачности, увеличивающей встречное излучение, эффективное излучение убывает. В облачную погоду оно гораздо меньше, чем в ясную.

Эффективное излучение, существует и в дневные часы. Но днем оно перекрывается или частично компенсируется поглощенной солнечной радиацией. Поэтому земная поверхность днем теплее, чем ночью.

В общем земная поверхность в средних широтах теряет эффективным излучением примерно половину того количества тепла, которое она получает от поглощенной радиации.

Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным излучением

R = (I sinh + i)(1 — A) — Ee

называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация.

Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10-15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20-25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.

Источник

Adblock
detector