Рядовая звезда — Солнце
Рядовая звезда — Солнце
«…Солнце является единственной звездой, у которой все явления могут быть детально изучены», — писал американский астроном Джордж Эллери Хейл, получивший золотую медаль Королевского астрономического общества за метод фотографирования поверхности Солнца и другие работы. В истинности сказанного нет оснований сомневаться и сегодня. И хотя, описывая Солнце и звезды, мы вторгаемся в сферу астрономии и даже астрофизики, другого выхода у нас нет. Солнце действительно является типичной рядовой звездой и вполне может служить меркой — критерием для остальных светил.
Некогда древние мудрецы провозгласили: «Ex nihilo nihil fit» — «из ничего ничто не родится». Прекрасный лозунг материалистического взгляда на мир. Не от него ли произошла великая идея сохранения вещества и энергии, ставшая краеугольным принципом науки? Еще Михаил Васильевич Ломоносов говаривал, взвешивая свои реторты с химическим зельем: «Ежели от одного сколько убавится, то к другому столь прибавится…»
Наблюдая Солнце, Вильям Гершель не раз задумывался над тем, сколько огненной энергии отдает наше светило в окружающее пространство. Отдавать-то отдает, а откуда берет? В. Гершель красиво назвал этот вопрос «великой тайной». Он не нашел на него ответа и оставил, перейдя к другим наблюдениям.
Скромный гейльброннский доктор Юлиус Роберт Майер и думать не думал оказаться причиной ожесточеннейшей полемики таких известных в науке XIX века людей, как Р. Клаузиус, Р. Тэт, В. Гиндаль, Дж. Джоуль и Е. Дюринг. Да еще удостоиться почетного сравнения, сделанного Е. Дюрингом в заголовке статьи «Роберт Майер — Галилей XIX столетия». Чем же столь знаменит оказался бывший судовой врач, скромно и в безвестности проживавший в провинции и пописывающий время от времени сложные научные статьи?
В статьях доктора Р. Майера содержался новый взгляд на силы.
В статьях доктора Р. Майера впервые сформулирован первый закон термодинамики.
В статьях доктора Р. Майера было дано определение механического эквивалента тепла.
Это обстоятельство и явилось предметом ожесточенного спора почтенных метров. Спора не по существу открытого закона, а, увы… по поводу приоритета; спора, кто первый: Р. Майер или Дж. Джоуль!
Вот кто такой был скромный врач из Гейльбронна. В 1847 году Р. Майер задался целью ни более ни менее, как открыть «великую тайну» В. Гершеля, выяснить источники энергии Солнца. А почему бы и нет? Ведь если закон сохранения энергии в самом деле закон для всей вселенной, то и Солнце должно подчиняться общим правилам. Год спустя он за собственный счет издает мемуар «К динамике неба в популярном представлении», начинавшийся словами: «Свет как звук состоит из колебаний, которые из светящегося или звучащего тела распространяются в определенной среде… Для того чтобы звучал колокол или струна, нужно, чтобы внешняя причина привела их в колебание и сила эта есть причина звука… Часто и удачно сравнивали Солнце с непрерывно звучащим колоколом. Но чем поддерживается в его неослабной силе и вечной юности это светило, наполняющее столь чудесным образом небесные пространства своими лучами? Что препятствует его истощению, наступлению равновесия, которое повело бы за собою мрак и смертный холод нашей планетной системы?
Всеобщий закон природы, не допускающий исключений, гласит, что для произведения тепла необходима известная затрата силы. Но последнюю, как бы разнообразна она ни была, всегда можно свести на две главные категории, на „затрату химического материала или на затрату механической работы“. Стало быть, источник солнечной теплоты следует искать в соответствующих двух агентах и выбирать между ними».
Дальше Р. Майер приводит некоторые популярные примеры. Он предполагает Солнце состоящим из одного угля и показывает, что при этом оно полностью сгорело бы за 4600 лет. Он переводит энергию вращения Солнца в тепло и показывает, что в этом случае ее хватило бы всего на 158 лет. Но «…совсем в ином виде представляется дело, если рассматривать Солнце как звено вселенной. По нашей солнечной системе пробегают, кроме известных доселе планет с их 18 спутниками, множество комет, которых, по знаменитому изречению И. Кеплера, в небесном пространстве больше, чем рыб в океане; и сюда же относятся астероиды, которым, судя по видимым нами падающим звездам и огненным метеорам, и числа нет. Поэтому со всех сторон медленно, но непрерывно к Солнцу должен притекать бесконечный поток весомого вещества и, сталкиваясь с ним, превращать механическую силу своего движения в теплоту».
Так выглядела первая формулировка метеоритной, или «динамической» теории Солнца.
При жизни Р. Майера его идеи не были широко известны просвещенному миру. И причина этого вовсе не в том, что сам доктор, по деликатному замечанию биографов, подвергался «продолжительному и, говорят, не совсем произвольному лечению холодной водой». (Такой метод был распространен в те годы в психиатрических лечебницах.) Просто его работ не знали. Но «идеи рождает время, и они носятся в воздухе». И потому скоро в Англии автором метеоритной гипотезы прослыл некий Дж. Ватерстон. Потом эта гипотеза подвергалась тщательной разработке В. Томсоном, который пришел в восторг от новой идеи связать излучение Солнца с потерей массы. Правда, было одно сомнение: «…если бы метеориты или подобные им тела стремились в подобающем количестве к Солнцу, то даже здесь у нас, за 150 миллионов километров от Солнца, ими кишел бы воздух; от их ударов Земля была бы раскалена докрасна; геологические пласты состояли бы в значительной степени из метеоритов; влияние их сказалось бы на движении Земли». Ведь метеоритного топлива требовалось нашему светилу порядочно. По расчетам того же Р. Майера, энергии падения Луны хватило бы Солнцу в лучшем случае на год для поддержания существующей интенсивности излучения. Нет, в таком откровенном виде эта гипотеза, пожалуй, не годилась.
В одной из своих популярных лекций немецкий медик и физик Г. Гельмгольц высказал любопытную мысль: если принять предположения П. Лапласа о том, что Солнце и его система произошли из туманности, причем процесс сжатия небесных тел не прекратился, а продолжается и поныне, то не может ли этот самый механизм сжатия восполнять потери на излучение? То есть не может ли механическая энергия сжатия переходить в тепловую?
Г. Гельмгольц произвел расчеты и получил интересные цифры. Сокращение диаметра Солнца всего на одну десятитысячную обеспечило бы покрытие тепловых потерь в течение более чем двух тысячелетий.
Против теории Г. Гельмгольца выступил инженер Карл В. Сименс, член гигантской фирмы «Сименс и Гальске», основанной его братом Эрнстом.
К. Сименс жил в Англии, где принял имя Вильяма, и был известен как сторонник и пропагандист всевозможных регенераторов к паровым машинам, регенеративных печей, регенеративных конденсаторов и прочее.
Экономный, как все немцы, В. Сименс не мог потерпеть того факта, что львиная доля солнечной энергии теряется в мировом пространстве и лишь ничтожная часть употребляется с пользой, нагревая планеты. Чтобы исправить положение, он предложил гипотезу, якобы объясняющую возвращение Солнцу истраченного тепла. Для этого он заполнил все мировое пространство газами, конечно, находящимися в разреженном состоянии. Каждое светило силой притяжения создает себе из этих газов атмосферу. Нижние слои ее состоят из тяжелых газов, верхние из легких, например из горючего водорода.
Теперь представим себе огромный солнечный шар, бешено крутящийся в пространстве. С экватора его под действием центробежной силы должны срываться огромные массы тяжелых газов и улетать прочь. Одновременно через полюсы к нему будут притекать потоки нового легкого и горючего газа, который, сгорая, возмещает потери Солнца на излучение. В. Сименс предлагает модель Солнца в виде некой регенеративной печи, в которой происходит восстановление жидкого вещества из продуктов сгорания… Странная с современных позиций гипотеза пользовалась успехом. Ф. Розенбергер, автор капитального труда «История физики», в 1892 году пишет: «Приведенные теории сохранения солнечной энергии (имеются в виду гипотезы Р. Майера, Г. Гельмгольца и В. Сименса. — А. Т.) не противоречат друг другу, не заключают в себе ничего невероятного и могут существовать рядом. В настоящую минуту самая живая из них теория Сименса, но наиболее грандиозная, без сомнения, майеровская, так как она соединяет нашу систему с прочими телами вселенной и обещает сохранение солнечной системы вплоть до всеобщего конца, т. е. до выравнивания энергии во всей вселенной».
Интересная цитата, если вдуматься. Некогда, занимаясь исследованием работы паровых машин, С. Карно пришел к выводу, что даже при отсутствии всякого трения ни одна машина, превращающая тепло в работу, не может иметь стопроцентного коэффициента полезного действия, КПД. Дело в том, что часть тепла, а значит и тепловой энергии, непременно от котла переходит к конденсатору, нагревая последний. Следовательно, часть энергии будет всегда теряться, повышая температуру конденсатора. Так будет происходить до тех пор, пока температура котла и конденсатора не сравняется. После чего машина перестанет работать. Отсюда С. Карно пришел ко второму принципу термодинамики, обобщенному в дальнейшем Р. Клаузиусом и В. Томсоном. Сегодня этот закон читается так: «В замкнутой системе любые процессы приводят к нарастанию энтропии». Энтропия — это мера обесценивания энергии.
Солнечная система тоже может служить иллюстрацией к этому закону. В соответствии со сформулированным принципом эволюция идет только в одну сторону. Следовательно, в конце всегда смерть. Но раз в промежутке существование, то должно было быть и начало, то есть рождение. Пусть рождение солнечной системы обязано проявлению космических сил. А если распространить второй принцип термодинамики на весь мир? Кто его создал? Похоже, что как ни верти, а без бога не обойдешься. Вот к какому выводу приводит нас безобидная цитата.
Против «тепловой смерти вселенной» выступали многие выдающиеся ученые XIX века. И сейчас страхи по этому поводу имеют чисто исторический интерес. XX век вообще положил конец умозрительным заключениям, выступавшим нередко в прошлом в качестве научных гипотез. Новое время предложило и новые методы. Чтобы двигаться дальше, нужно было прежде обобщить накопленную информацию. Непрерывное же выдвижение гипотез напоминало бег на месте.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Солнце на Земле
1956 год. 25 апреля Сенсация в Харуэлле Утром 25 апреля 1956 г. в конференц-зале английского атомного центра в Харуэлле, который находится в 60 милях к западу от Лондона, царило необычное оживление. К подъезду одна за одной подкатывали автомашины, из которых выходили виднейшие
Нейтрино и Солнце
Нейтрино и Солнце Рассмотрим теперь термоядерные реакции, происходящие внутри звезд. В звездах, подобных нашему Солнцу, энергия образуется за счет превращения водорода в гелий. Детали превращения могут быть различны, но общим в реакции синтеза является превращение
Глава 6 Звезда — газовый шар, находящийся в состоянии равновесия
Глава 6 Звезда — газовый шар, находящийся в состоянии равновесия Представляется почти очевидным тот факт, что подавляющее большинство звезд не меняет своих свойств в течение огромных промежутков времени. Это утверждение совершенно очевидно для интервала времени по
Наше Солнце
Наше Солнце Начало жизненного цикла нашего Солнца такое же, как и у Предсолнца, за исключением того, что Солнце не столь массивно. Малые звезды живут дольше, поскольку их меньшая масса препятствует столь быстрому процессу слияния ядер. Поэтому нашему Солнцу отпущен
1. Солнце — мерило звезд
1. Солнце — мерило звезд Звезды — солнца. Солнце — звезда. Солнце огромно. А звезды? Как мерить звезды? Какие гири брать для взвешивания, какие мерки для измерения диаметров? Не подойдет ли для этой цели само Солнце — звезда, о которой мы знаем больше, чем обо всех светилах
Солнце
Солнце 35. Имеет ли Солнце поверхность? Солнце это гигантский светящийся газовый шар, так что он не имеет твердой поверхности, как Земля. Но так, конечно, кажется на первый взгляд. Почему?Солнечную «поверхность», или фотосферу, к которой солнечные лучи с большим трудом
35. Имеет ли Солнце поверхность?
35. Имеет ли Солнце поверхность? Солнце это гигантский светящийся газовый шар, так что он не имеет твердой поверхности, как Земля. Но так, конечно, кажется на первый взгляд. Почему?Солнечную «поверхность», или фотосферу, к которой солнечные лучи с большим трудом пробиваются
36. Почему Солнце горячее?
36. Почему Солнце горячее? Солнце жаркое по одной простой причине. Оно обладает большой массой. Огромное количество вещества прессуется в ядро под действием силы тяжести, сжимающей его.Когда газ сжат, он становится горячим. Это известно любому, кто сжимал воздух в
38. Пятна на Солнце, что это такое?
38. Пятна на Солнце, что это такое? Пятна на Солнце представляют собой короткоживущие темные области на светлой поверхности Солнца. Хотя они и горячие, но выглядят темными, так как намного холоднее, чем окружение.Самое большое пятно может достигать 80 000 км в поперечнике,
55. Действительно ли Юпитер — неудавшееся солнце?
55. Действительно ли Юпитер — неудавшееся солнце? В фильме «2010, Одиссея 2» инопланетяне превращают Юпитер во второе солнце, чтобы подать руку помощи жизни, возникающей на Европе, ледяной луне Юпитера.Но действительно ли Юпитер является неудавшимся солнцем? Как близко он
70. Все звезды одиночки, как Солнце?
70. Все звезды одиночки, как Солнце? Солнце фактически уникально тем, что является одиночной звездой. Более половины звезд в Млечном Пути находятся в мультисистемах: две, три или даже четыре звезды объединены друг с другом.Действительно, ближайшая к Солнцу звездная
Глава 14. Как сгорает Солнце
Глава 14. Как сгорает Солнце Свет, вспышку которого породил в 1945 взрыв в Хиросиме, достиг орбиты Луны. Малая часть его вернулась, отраженной, на Землю, все остальное продолжило движение вперед, достигло Солнца и понеслось дальше, в бесконечную вселенную. Эту вспышку можно
4.6. Кометы, «царапающие Солнце»
4.6. Кометы, «царапающие Солнце» Вокруг сияющего света, Что вечно льет источник дня, Кружатся легкие кометы, Как мотыльки вокруг огня. Несясь среди планетной сферы, Они недолго в ней живут, Семьи небесной эфемеры, Они свиданья с Солнцем ждут. Н. Морозов Первой
Нейтронная звезда на орбите вокруг черной дыры
Нейтронная звезда на орбите вокруг черной дыры Волны исходили от нейтронной звезды, вращающейся вокруг черной дыры. Звезда весила в 1,5 раза больше Солнца, а черная дыра – в 4,5 раза больше Солнца, при этом дыра быстро вращалась. Образованный этим вращением
Источник
Рядовая звезда: как Солнце влияет на нашу планету и что с ним будет к концу жизни
Теории и практики
Сколько еще будет существовать Солнце, что с ним случится в конце и почему через 3,5 миллиарда лет условия на Земле будут такими же, как сейчас на Венере, — «Теории и практики» публикуют отрывок из книги астронома Михаила Марова «Космос. От Солнечной системы вглубь Вселенной», которая вошла в этом году в длинный список премии «Просветитель».
«Космос. От Солнечной системы вглубь Вселенной»
Солнце — центральное светило, вокруг которого обращаются все планеты и малые тела Солнечной системы. Это не только центр тяготения, но и источник энергии, обеспечивающий тепловой баланс и природные условия на планетах, в том числе жизнь на Земле. Движение Солнца относительно звезд (и горизонта) изучалось с древних времен, чтобы создавать календари, которые люди использовали, прежде всего, для сельскохозяйственных нужд. Григорианский календарь, в настоящее время используемый почти повсюду в мире, является по существу солнечным календарем, основанным на циклическом обращении Земли вокруг Солнца*. Визуальная звездная величина Солнца равна 26,74, и оно является самым ярким объектом на нашем небе.
Солнце — рядовая звезда, находящаяся в нашей галактике, называемой просто Галактика или Млечный Путь, на расстоянии ⅔ от ее центра, что составляет 26000 световых лет, или ≈10 кпк, и на расстоянии ≈25 пк от плоскости Галактики. Оно обращается вокруг ее центра со скоростью ≈220 км/с и периодом 225–250 миллионов лет (галактический год) по часовой стрелке, если смотреть со стороны северного галактического полюса. Орбита является, как предполагают, приблизительно эллиптической и испытывает возмущения галактических спиральных рукавов из-за неоднородных распределений звездных масс. Кроме того, Солнце совершает периодические перемещения вверх и вниз относительно плоскости Галактики от двух до трех раз за оборот. Это приводит к изменению гравитационных возмущений и, в частности, оказывает сильное влияние на устойчивость положения объектов на краю Солнечной системы. Это служит причиной вторжения комет из Облака Оорта внутрь Солнечной системы, что ведет к увеличению ударных событий. Вообще же, с точки зрения различного рода возмущений, мы находимся в довольно благоприятной зоне в одном из спиральных рукавов нашей Галактики на расстоянии ≈ ⅔ от ее центра.
*Григорианский календарь, как система исчисления времени, был введен в католических странах папой римским Григорием XIII 4 октября 1582 года взамен прежнего юлианского календаря, и следующим днем после четверга 4 октября стала пятница 15 октября. Согласно григорианскому календарю продолжительность года равна 365,2425 суток и 97 из 400 лет — високосные.
В современную эпоху Солнце расположено вблизи внутренней стороны рукава Ориона, перемещаясь внутри Местного Межзвездного Облака (ММО), заполненного разреженным горячим газом, возможно остатком взрыва сверхновой. Эту область называют галактической обитаемой зоной. Солнце движется в Млечном Пути (относительно других близких звезд) по направлению к звезде Вега в созвездии Лира под углом приблизительно 60 градусов от направления к галактическому центру; его называют движением к апексу.
Интересно, что, так как наша Галактика также перемещается относительно космического микроволнового фонового излучения (CMB— Cosmic Microvawe Background) со скоростью 550 км/с в направлении созвездия Гидры, результирующая (остаточная) скорость Солнца относительно CMB составляет около 370 км/с и направлена к созвездию Льва. Заметим, что Солнце в своем движении испытывает небольшие возмущения от планет, прежде всего Юпитера, образуя с ним общий гравитационный центр Солнечной системы — барицентр, расположенный в пределах радиуса Солнца. Каждые несколько сотен лет барицентрическое движение переключается от прямого (проградного) к обратому (ретроградному).
* Согласно теории звездной эволюции, менее массивные звезды, чем Т Тельца, также переходят к MS по этому треку.
Солнце сформировалось примерно 4,5 млрд лет назад, когда быстрое сжатие облака молекулярного водорода под действием гравитационных сил привело к образованию в нашей области Галактики переменной звезды первого типа звездного населения — звезды типа T Тельца (T Tauri). После начала в солнечном ядре реакций термоядерного синтеза (превращения водорода в гелий) Солнце перешло на главную последовательность диаграммы Герцшпрунга–Рассела (ГР). Солнце классифицируется как желтая карликовая звезда класса G2V, которая кажется желтой при наблюдении с Земли из-за небольшого избытка желтого света в ее спектре, вызванного рассеянием в атмосфере синих лучей. Римская цифра V в обозначении G2V означает, что Солнце принадлежит главной последовательности ГР-диаграммы. Как предполагают, в самый ранний период эволюции, до момента перехода на главную последовательность, оно находилось на так называемом треке Хаяши, где сжималось и, соответственно, уменьшало светимость при сохранении примерно той же самой температуры*. Следуя эволюционному сценарию, типичному для звезд низкой и средней массы, находящихся на главной последовательности, Солнце прошло примерно половину пути активной стадии своего жизненного цикла (превращения водорода в гелий в реакциях термоядерного синтеза), составляющего в общей сложности примерно 10 млрд лет, и сохранит эту активность в течение последующих приблизительно 5 млрд лет. Солнце ежегодно теряет 10 14 своей массы, а суммарные потери на протяжении всей его жизни составят 0,01%.
По своей природе Солнце — плазменный шар диаметром приблизительно 1,5 млн км. Точные значения его экваториального радиуса и среднего диаметра составляют соответственно 695 500 км и 1 392 000 км. Это на два порядка больше размера Земли и на порядок больше размера Юпитера. […] Солнце вращается вокруг своей оси против часовой стрелки (если смотреть с Северного полюса мира), скорость вращения внешних видимых слоев составляет 7 284 км/час. Сидерический период вращения на экваторе равен 25,38 сут., в то время как период на полюсах намного длиннее — 33,5 сут., т. е. атмосфера на полюсах вращается медленнее, чем на экваторе. Это различие возникает из-за дифференциального вращения, вызванного конвекцией и неравномерным переносом масс из ядра наружу, и связано с перераспределением углового момента. При наблюдении с Земли кажущийся период вращения составляет приблизительно 28 дней. […]
Фигура Солнца почти сферическая, ее сплюснутость незначительная, всего 9 миллионных долей. Это означает, что его полярный радиус меньше экваториального только на ≈10 км. Масса Солнца равна ≈330 000 масс Земли […]. Солнце заключает в себе 99,86% массы всей Солнечной системы. […]
Спустя примерно 1 млрд лет после выхода на Главную последовательность (по оценкам между 3,8 и 2,5 млрд лет тому назад) яркость Солнца увеличилась примерно на 30%. Совершенно очевидно, что с изменением светимости Солнца напрямую связаны проблемы климатической эволюции планет. Особенно это касается Земли, температура на поверхности которой, необходимая для сохранения жидкой воды (и, вероятно, происхождения жизни), могла быть достигнута только за счет более высокого содержания в атмосфере парниковых газов, чтобы компенсировать низкую инсоляцию. Эта проблема носит название «парадокса молодого Солнца». В последующий период яркость Солнца (также как и его радиус) продолжали медленно расти. По существующим оценкам, Солнце становится приблизительно на 10% ярче каждые один миллиард лет. Соответственно, поверхностные температуры планет (включая температуру на Земле) медленно повышаются. Примерно через 3,5 млрд лет от настоящего времени яркость Солнца возрастет на 40%, и к этому времени условия на Земле будут подобны условиям на сегодняшней Венере. […]
К концу своей жизни Солнце перейдет в состояние красного гиганта. Водородное топливо в ядре будет исчерпано, его внешние слои сильно расширятся, а ядро сожмется и нагреется. Водородный синтез продолжится вдоль оболочки, окружающей гелиевое ядро, а сама оболочка будет постоянно расширяться. Будет образовываться все большее количество гелия, и температура ядра будет расти. При достижении в ядре температуры ≈100 миллионов градусов начнется горение гелия с образованием углерода. Это, вероятно, заключительная фаза активности Солнца, поскольку его масса недостаточна для начала более поздних стадий ядерного синтеза с участием более тяжелых элементов — азота и кислорода. Из-за сравнительно небольшой массы жизнь Солнца не окончится взрывом сверхновой звезды. Вместо этого будут происходить интенсивные тепловые пульсации, которые заставят Солнце сбросить внешние оболочки, и из них образуется планетарная туманность. В ходе дальнейшей эволюции образуется очень горячее вырожденное ядро—белый карлик, лишенный собственных источников термоядерной энергии, с очень высокой плотностью вещества, который будет медленно охлаждаться и, как предсказывает теория, через десятки миллиардов лет превратится в невидимый черный карлик. […]
Солнечная активность
Солнце проявляет различные виды активности, его внешний вид постоянно изменяется, как свидетельствуют многочисленные наблюдения с Земли и из космоса. Самым известным и наиболее выраженным является 11-летний цикл солнечной активности, которая ориентировочно соответствует числу солнечных пятен на поверхности Солнца. Протяженность солнечных пятен может достигать в поперечнике десятков тысяч километров. Обычно они существуют в виде пар с противоположной магнитной полярностью, которая чередуется каждый солнечный цикл и достигает пика в максимуме активности вблизи солнечного экватора. Как уже упоминалось, солнечные пятна темнее и холоднее, чем окружающая поверхность фотосферы, потому что они являются областями пониженной энергии конвективного переноса из горячих недр, подавляемого сильными магнитными полями. Полярность магнитного диполя Солнца меняется каждые 11 лет таким образом, что северный магнитный полюс становится южным, и наоборот. Помимо изменения солнечной активности внутри 11-летнего цикла, определенные изменения наблюдаются от цикла к циклу, поэтому выделяют также 22-годичные и более длинные циклы. Нерегулярность цикличности проявляется в виде растянутых периодов минимума солнечной активности с минимальным числом солнечных пятен в течение нескольких циклов, подобно наблюдавшейся в семнадцатом столетии. Этот период известен как Маундеровский минимум, который оказал сильное воздействие на климат Земли. Некоторые ученые полагают, что, в этот период Солнце проходило через 70-летний период активности с почти полным отсутствием солнечных пятен. Напомним, что необычный солнечный минимум был отмечен в 2008 г. Он продолжался намного дольше и с более низким числом солнечных пятен, чем обычно. Это означает, что повторяемость солнечной активности на протяжении десятков и сотен лет является, вообще говоря, неустойчивой. Кроме того, теория предсказывает возможность существования магнитной неустойчивости в ядре Солнца, которая может вызывать колебания активности с периодом в десятки тысяч лет. […]
Наиболее характерными и зрелищными проявлениями солнечной активности являются солнечные вспышки, выбросы корональной массы (CME) и солнечные протонные события (SPE). Степень их активности тесно связана с 11-летним солнечным циклом. Эти явления сопровождаются выбросами огромного количества протонов и электронов высоких энергий, значительно повышая энергию «более спокойных» частиц солнечного ветра. Они оказывают громадное влияние на процессы взаимодействия солнечной плазмы с Землей и другими телами Солнечной системы, в том числе на вариации геомагнитного поля, верхнюю и среднюю атмосферу, явления на земной поверхности. Состояние солнечной активности определяет космическую погоду, которая влияет на нашу природную среду и на жизнь на Земле. […]
По существу вспышка является взрывом, и это грандиозное явление проявляется как мгновенное и интенсивное изменение яркости в активной области на поверхности Солнца. […] выделение энергии мощной солнечной вспышки может достигать […] ⅙ энергии, выделяемой Солнцем в секунду, или 160 млрд мегатонн в тротиловом эквиваленте. Примерно половину этой энергии составляет кинетическая энергия корональной плазмы, а другую половину — жесткое электромагнитное излучение и потоки высокоэнергичных заряженных частиц.
«Примерно через 3,5 млрд лет яркость Солнца возрастет на 40%, и к этому времени условия на Земле будут подобны условиям на сегодняшней Венере»
Вспышка может продолжаться около 200 минут, сопровождаясь сильными изменениями интенсивности рентгеновского излучения и мощным ускорением электронов и протонов, скорость которых приближается к скорости света. В отличие от солнечного ветра, частицы которого распространяются до Земли более суток, частицы, генерируемые во время вспышек, достигают Земли за десятки минут, сильно возмущая космическую погоду. Эта радиация чрезвычайно опасна для космонавтов, даже находящихся на околоземных орбитах, не говоря уже о межпланетных перелетах.
Еще более грандиозными являются выбросы корональной массы, представляющие собой наиболее мощное явление в Солнечной системе. Они возникают в короне в виде взрывов огромных объемов солнечной плазмы, вызываемых пересоединением силовых линий магнитного поля, в результате чего происходит выделение огромной энергии. Некоторые из них связаны с солнечными вспышками или имеют отношение к солнечным протуберанцам, извергаемым с солнечной поверхности и удерживаемым магнитными полями. Выбросы корональной массы случаются периодически и состоят из очень энергичных частиц. Сгустки плазмы, образующие гигантские плазменные пузыри, расширяющиеся наружу, выбрасываются в космическое пространство. Они заключают в себе миллиарды тонн материи, распространяющейся в межпланетной среде со скоростью ≈1000 км/с и образующей на фронте отошедшую ударную волну. Выбросы корональной массы ответственны за мощные магнитные бури на Земле. […] С корональными выбросами еще больше, чем с солнечными вспышками, связан приток высокоэнергичной проникающей радиации. […]
Взаимодействие солнечной плазмы с планетами и малыми телами оказывает на них сильное влияние, прежде всего на верхнюю атмосферу и магнитосферу—собственную или индуцированную, в зависимости от того, обладает ли планета магнитным полем. Такое взаимодействие называют солнечно-планетными (для Земли—солнечно-земными) связями, существенно зависящими от фазы 11-летнего цикла и других проявлений солнечной активности. Они приводят к изменениям формы и размеров магнитосферы, возникновению магнитных бурь, вариациям параметров верхней атмосферы, росту уровня радиационной опасности. Так, температура верхней атмосферы Земли в диапазоне высот 200–1000 км возрастет в несколько раз, от ≈400 до ≈1500K, а плотность изменяется на порядка величины. Это сильно влияет на время жизни искусственных спутников и орбитальных станций. […]
Наиболее зрелищным проявлением воздействия солнечной активности на Землю и другие планеты с магнитным полем являются полярные сияния, наблюдаемые на высоких широтах. На Земле возмущения на Солнце приводят также к нарушению радиосвязи, воздействию на высоковольтные линии электропередач (блэкауты), подземные кабели и трубопроводы, работу радиолокационных станций, а также повреждают электронику космических аппаратов.
Источник