Меню

Сколько золота во вселенной

Во Вселенной слишком много золота. И никто не знает, откуда оно взялось

Золото кажется нам редким и дорогим металлом, но его в наблюдаемой нами Вселенной все еще гораздо больше, чем должно быть. И ученые не знают, почему так произошло.

И вот в чем проблема: золото — это элемент, а это означает, что вы не можете получить его путем обычных химических реакции, хотя алхимики пытались это сделать веками. Чтобы создать этот блестящий металл, вам нужно связать вместе 79 протонов и 118 нейтронов, чтобы сформировать единое атомное ядро. Это сложная и энергоемкая реакция ядерного синтеза. Но такой интенсивный синтез не происходит достаточно часто, по крайней мере, поблизости от нас, чтобы создать все те запасы золота, который мы находим на Земле и в других местах Солнечной системы.

Новое исследование показало, что наиболее распространенный процесс производства золота — столкновения нейтронных звезд — не может объяснить его изобилие. Так откуда же взялось все это золото? Ну, этот драгоценный металл также может создаваться при взрывах сверхновых. Только вот новая работа показала, что даже такие необычные космические явления не могут объяснить все количество золота, что мы видим.

При столкновениях нейтронных звезд за короткое время выделяется огромное количество энергии, что позволяет связать несколько легких элементов в тяжелые атомные ядра, такие как золото, и затем выкинуть их в космос. Что касается обычных сверхновых, то они вообще не отвечают за золото в привычной нам Вселенной, потому что звезды, достаточно массивные, чтобы создать этот драгметалл перед смертью, во-первых, очень редки, а, во-вторых, становятся черными дырами при взрыве, объясняет Чиаки Кобаяши, астрофизик из Университета Хартфордшира в Соединенном Королевстве и автор нового исследования. Так что при взрыве обычной массивной сверхновой золото просто попадает в черную дыру и теряется для нас навсегда.

А что насчет необычных сверхновых? Да, такие действительно есть и называются магнитовращательными, и они являются «очень редким типом сверхновой, очень быстро вращающейся», — сказала Кобаяши.

Во время превращения в магнитовращательную сверхновую умирающая звезда вращается настолько быстро и подвергается воздействию таких сильных магнитных полей, что при взрыве буквально выворачивается наизнанку. При этом она запускает в космос раскаленные струи вещества. А поскольку при превращении звезды в сверхновую выделяется огромное количество энергии, то в таких струях может содержаться в том числе и только что синтезированное золото. Проблема в том, что звезды, достаточно массивные, чтобы синтезировать золото, встречаются редко. Звезды, которые синтезируют золото, а затем выбрасывают его в космос, встречаются еще реже.

Но даже нейтронные звезды вместе с магнитовращательными сверхновыми не могут объяснить изобилие золота в наблюдаемой нами Вселенной, как выяснили Кобаяши и ее коллеги. «В этой загадке есть два важных момента», — сказала она. «Момент номер один: слияния нейтронных звезд недостаточно. Момент номер два: даже со вторым источником мы все еще не можем объяснить наблюдаемое количество золота».

По ее словам, прошлые исследования подтвердили, что столкновения нейтронных звезд действительно вызывают «дожди из золота». Но эти исследования не учитывали редкость таких столкновений. Трудно точно оценить, как часто крошечные нейтронные звезды, которые сами являются сверхплотными остатками древних сверхновых, сталкиваются друг с другом. Но, в любом случае, едва ли такие коллизии постоянно происходят во Вселенной: ученые видели, как это происходило, лишь однажды. Кобаяши и ее коллеги обнаружили, что даже приблизительные оценки показывают, что нейтронные звезды не сталкиваются достаточно часто, чтобы произвести все золото, обнаруженное в Солнечной системе.

«Это исследование не первое, в котором предполагается, что столкновений нейтронных звезд недостаточно для объяснения изобилия золота во Вселенной», — сказал Ян Родерер, астрофизик из Мичиганского университета, который ищет следы редких элементов в далеких звездах.

Читайте также:  Как понять размеры вселенной

Но новая статья Кобаяши и ее коллег, опубликованная в The Astrophysical Journal, имеет одно важное преимущество: она чрезвычайно тщательная, сказал Родерер. Исследователи собрали огромное количество данных и включили их в надежные модели эволюции галактик и производства в них новых химических веществ. «В новой работе есть ссылки на 341 другую публикацию, что примерно в три раза больше, чем в типичных статьях в Astrophysical Journal в наши дни», — говорит Родерер. По его словам, собрать все эти данные вместе требует «титанических усилий».


У золота много различных применений. Например, им покрывали ножки старых процессоров.

Используя этот подход, авторы смогли объяснить образование как легких атомов, таких как углерод-12 (шесть протонов и шесть нейтронов), так и тяжелых, как уран-238 (92 протона и 146 нейтронов). По словам Родерера, это впечатляющий диапазон, охватывающий элементы, которые обычно игнорируются в подобных исследованиях.

И в основном расчеты дали правильные результаты.

Например, при столкновении нейтронных звезд в модели Кобаяши образуется стронций. Это соответствует обнаружению стронция в космосе после одного такого столкновения, которое ученые непосредственно наблюдали. К тому же магнитовращательные сверхновые объяснили присутствие в космосе еще одного редкого тяжелого элемента — европия, который в прошлом было сложно объяснить.

Но золото остается загадкой.

Кобаяши считает, что где-то в космосе есть нечто, о чем ученые не знают, которое активно производит золото. Или, возможно, столкновения нейтронных звезд приносят больше золота, чем предполагают существующие модели. В любом случае астрофизикам предстоит проделать еще много работы, прежде чем они смогут объяснить, откуда взялся весь этот драгоценный металл для красивых побрякушек.

Источник

Во Вселенной слишком много золота и никто не знает, откуда оно взялось

Вот в чём проблема: золото – это элемент, а это значит, что вы не можете получить его благодаря обычным химическим реакциям, хотя алхимики пытались сделать это веками. Для получения блестящего металла, вам нужно связать 79 протонов и 118 нейтронов вместе, чтобы сформировать единое атомное ядро. Это интенсивная реакция ядерного синтеза. Но такой интенсивный синтез не происходит достаточно часто, по крайней мере, поблизости, чтобы создать гигантский кладезь золота, который мы находим на Земле и в других местах Солнечной системы.

Новое исследование показало, что наиболее распространённый вариант происхождения золота – столкновения нейтронных звёзд – тоже не может объяснить его изобилие. Так откуда же золото? Есть и другие варианты, в том числе сверхновые. К сожалению, новое исследование показало, что даже такие странные явления не могут объяснить количество золота во Вселенной.

Столкновения нейтронных звёзд создают золото, на короткое время объединяя протоны и нейтроны в атомные ядра, а затем извергая эти тяжёлые ядра в космос.

“Обычные сверхновые не могут объяснить наличие всего золота во Вселенной, потому что звёзды, достаточно массивные, чтобы сплавить золото, становятся чёрными дырами при взрыве”, – сказала Чиаки Кобаяши, астрофизик из Университета Хартфордшира в Соединенном Королевстве, автор нового исследования.

И в случае обычной сверхновой всё золото поглощается чёрной дырой.

А что насчёт странных сверхновых? Этот тип взрыва звезды, так называемая магнитовращательная сверхновая, является “очень редкой и очень быстро вращающейся сверхновой.

Во время магнитовращательной сверхновой умирающая звезда вращается так быстро и подвергается воздействию таких сильных магнитных полей, что при взрыве выворачивается наизнанку. Погибая, звезда запускает в космос раскалённые добела струи вещества. А поскольку звезда вывернута наизнанку, её струи забиты ядрами золота. Звёзды, которые вообще сплавляют золото, встречаются редко. Звёзды, которые сплавляют золото, а затем выбрасывают его в космос, встречаются ещё реже.

Читайте также:  Отроки во вселенной ютьюб

Художественная иллюстрация сверхновой. Авторы и права: NASA / CXC / M. Weiss / University of California, Berkeley / N. Smith et al / Lick Observatory / J. Bloom & C. Hansen.

Но даже нейтронные звёзды плюс магнитовращательные сверхновые звёзды вместе не могут объяснить золотое изобилие Земли, как выяснили Кобаяши и её коллеги.

“В этом вопросе есть два пункта”, – сказала она. “Первый: слияний нейтронных звёзд недостаточно. Второй: даже со вторым источником мы всё ещё не можем объяснить наблюдаемое количество золота”.

По её словам, прошлые исследования подтвердили, что столкновения нейтронных звёзд вызывают золотой дождь. Но эти исследования не учитывали редкость этих столкновений. Трудно точно оценить, как часто крошечные нейтронные звёзды – сами по себе сверхплотные остатки древних сверхновых – сталкиваются друг с другом. Это происходит очень редко: учёные видели, как это происходило только однажды. Кобаяши и её соавторы обнаружили, что даже приблизительные оценки показывают, что они не сталкиваются достаточно часто, чтобы произвести всё золото, обнаруженное в Солнечной системе.

“Эта статья не первая, в которой предполагается, что столкновений нейтронных звёзд недостаточно для объяснения изобилия золота”, – сказал Ян Родерер, астрофизик из Мичиганского университета, который ищет следы редких элементов в далеких звёздах.

Но новая статья Кобаяши и её коллег, опубликованная 15 сентября в The Astrophysical Journal, имеет одно большое преимущество: она чрезвычайно точная. Исследователи собрали огромное количество данных и включили их в надёжные модели эволюции галактики и производства новых химических элементов.

“В документе есть ссылки на 341 другую публикацию, что примерно в три раза больше, чем в типичных статьях в The Astrophysical Journal в наши дни”, – сказал Родерер.

По его словам, собрать все эти данные – это “титанический труд”.

Используя этот подход, авторы смогли объяснить образование атомов углерода (шесть протонов и шесть нейтронов) и урана (92 протона и 146 нейтронов). По словам Родерера, это впечатляющий диапазон, охватывающий элементы, которые обычно игнорируются в подобных исследованиях.

Возможно, столкновения нейтронных звёзд приносят больше золота, чем предполагают существующие модели. В любом случае астрофизикам предстоит проделать ещё много работы, прежде чем они смогут объяснить, откуда взялось это украшение.

Источник

Откуда все золото мира? Из космоса!

Возможно, мы любим золото еще и потому, что атомы нашего тела и золото возникли вместе в термоядерном пламени звезд

Фото: Khaled al-Hariri / Reuters

Золото – дитя столкновений звезд. Подтверждение этой гипотезы нашли ученые из Гарвард-Смитсоновского центра астрофизики в Кембридже под руководством Эдо Бергера, когда проанализировали результаты зафиксированного гамма-всплеска на расстоянии около 4 миллиардов световых лет от Земли. Гамма-всплеск был связан со столкновением двух нейтронных звезд и последовавшим взрывом. Именно этот супервзрыв породил золото массой в несколько наших Лун, а также другие тяжелые металлы.

Называть стоимость этого золота в наших денежных единицах бессмысленно – 10 октальонов долларов просто невозможно представить. Но становится понятно – где находится место, которое насыщает нашу Вселенную золотом.

Как рождаются элементы

Сейчас науке доподлинно известно, как проистекает большинство термоядерных реакций в недрах звезд. Самая простая реакция – это слияние ядер водорода в ядро гелия. Когда начнет «гореть» гелий, то может появиться углерод, а когда и он «загорится» в термоядерном пламени, то будут образовываться ядра магния, натрия, кислорода, алюминия, кремния. Когда «загорится» кремний, можно будет сказать, что топливо для термоядерного «костра» заканчивается, – так как превращение кремния в серу и аргон – последние реакции, которые выделяют тепло. Последующая цепочка перерождений элементов уже его поглощает – и связано это уже с появлением железа.

Читайте также:  Почему вселенная помогает людям

Спектральные линии основных элементов Солнца. Спектр, огрубленный в целях наглядности, – в реальности линий много больше, и одна из них относится к золоту

В жизни многих звезд наступает момент (наступит он и у Солнца), когда водород в их центральной части заканчивается. Звезда начинает распухать и превращается в красного гиганта. И вот во внешних оболочках таких звезд легкие элементы начинают захватывать нейтроны, идущие из недр звезды, и образовывать ядра все более тяжелых элементов. Эти элементы выносятся со звездным ветром в окружающую среду .

Но, к сожалению, астрофизики не могли до сих пор объяснить, откуда все же берется золото во Вселенной в существующих количествах, хотя и понимали, какие условия нужны для его «производства». Мало того: более 70 лет назад физики уже попытались его сделать, по сути, моделируя звездный процесс в лабораторных условиях.

Алхимики XX века

Золото нейтронных звезд

Нейтронные звезды – уникальные объекты, которые образуются в финальной стадии существования массивных звезд. Описать их крайне трудно – это шары из нейтронов, окруженные корой ядер тяжелых элементов. Плотность нейтронного вещества невообразимая – что-то около 280 миллионов тонн в кубическом сантиметре! Вся масса Солнца умещается в шаре диаметром 15–20 километров. Урони наперсток такого вещества на землю – и он проколет ее до ядра.

Именно столкновение таких монстров создавало идеальные условия для образования тяжелых металлов, в частности золота. Эту идею предложил еще в 1970-х годах Джеймс Латтимер, в то время, когда научное сообщество полагало, что тяжелые элементы образуются во время коллапса массивных звезд. Однако у Латтимера в то время не было технических возможностей подтвердить свою точку зрения. Да и сейчас он с осторожностью относится к интерпретациям Бергера, полагая, что нужны новые, дополнительные научные миссии и наблюдения, которые и должны подтвердить его теорию, хотя это скорее традиционная скептическая позиция настоящего ученого, опасающегося случайных совпадений и ищущего доказательств.

Так художники изображают столкновение нейтронных звезд

Если же гипотеза Латтимера верна, то становится понятным и появление золота на нашей планете. Аномально высокое содержание тяжелых металлов в Солнечной системе наводит на мысль, что сама она образовалась из газопылевой туманности, оставшейся после взрыва сверхновой звезды, одной или даже нескольких, или какого-либо подобного катаклизма. Вот эти тяжелые элементы и создали пояс каменных планет от Меркурия до Марса, астероиды и метеориты. Здесь мы уходим из сферы астрофизики и переходим в зону ответственности планетологии.

Золотой дождь

Ответ на этот вопрос нашли специалисты Бристольского университета под руководством Маттиаса Виллболда. Сначала они нашли самую древнюю земную кору на планете в Гренландии, где находится геологическая формация Исуа. Этой формации, по мнению ученых, около 3,8 миллиарда лет, это фрагмент древнейшей земной коры, образовавшейся на остывающей планете. Здесь были взяты образцы для определения содержания в них тяжелых элементов.

Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии. Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.

Но я хочу обратить ваше внимание на другой факт. Мы все состоим из углерода, кислорода, железа и других сложных элементов, которые образовались в недрах горящих и взрывающихся звезд. И золото – наш брат по звезде-матери. Может, поэтому мы его так любим?

Источник

Adblock
detector