Меню

Склонение солнца 1 января

День зимнего солнцестояния

Многие жители Земли, занятые в последние дни пред-Рождественскими и пред-Новогодними хлопотами, даже не заметили, что наступило Зимнее Солнцестояние. В Северном полушарии где-то глухая полярная ночь, где-то метели и снегопады, а где-то идет дождь и небо закрыто свинцовыми тучами. Дни короткие, сумерки наступают рано, люди ходят вялые и сонные, запуганные опасностью подхватить, невесть откуда свалившийся на их голову, неведомый и смертельно опасный коронавирус, и только предпраздничная суета и предвкушение весьма продолжительных зимних праздников заставляет многих встряхиваться.

В День Осеннего равноденствия , 23 сентября, Солнце в своем движении по эклиптике, в точке Весов, пересекло небесный экватор и оказалось в южном полушарии небесной сферы. С этого дня и до Дня Весеннего равноденствия , Солнышко будет иметь Южное ( Зюйдовое – S ) склонение.

Со Дня Весеннего равноденствия и до Дня Зимнего Солнцестояния, склонение Солнца увеличивалось , только вот происходило это не равномерно: в первый месяц склонение изменялось в среднем на 0,4º в сутки, затем в течение второго месяца в среднем со скоростью 0,3º в сутки, а в течение последнего месяца до дня зимнего солнцестояния в среднем со скоростью 0,1º в сутки.

В День Зимнего Солнцестояния , 20 декабря, Солнце приходит в точку Козерога и в этот день его склонение достигает своего максимального значения, d=23º 26′,2 S .

В точке Козерога, склонение Солнца равно углу наклона эклиптики к небесному экватору, d= e = 23º 26′,2.

Собственно, скорость изменения склонения Солнца замедляется за несколько дней до 21 декабря, и, например, 20 декабря 2020 г, в 21:00 гринвичского времени, склонение Солнца достигнет максимального значения d=23º 26′,2 S и будет сохраняться неизменным до 23:00 гринвичского времени 21 декабря 2020 г, а затем начнёт очень медленно уменьшаться , однако через несколько дней, скорость изменения увеличится.

Именно потому, что с 20 по 22 декабря склонение Солнца практически одинаковое и поэтому его полуденная (меридиональная) высота остаётся практически неизменной и кажется, что Солнце стоит, и стали называть этот день, днём зимнего солнцестояния.

В этот день, в Северном полушарии наблюдается самый короткий день и самая длинная ночь, а в заполярных широтах наблюдается середина «полярной ночи».

Зато в Южном полушарии наблюдается самый длинный день и самая короткая ночь, и весёлые жители шумного Рио-де-Жанейро, начинают готовиться к своему знаменитому карнавалу, правда весьма сомнительно, что в 2021 году красочный карнавал украсит улицы Рио, из-за измучившего всех жителей коронавируса.

Достигнув в День Зимнего Солнцестояния своего максимального значения в южном полушарии, Солнышко начнет движение по эклиптике в направлении небесного экватора. С этого дня склонение Солнца начнёт уменьшаться и у нас в Северном полушарии, продолжительность дня, хотя и медленно, но начнёт увеличиваться, а продолжительность ночи соответственно уменьшаться. В старину, на Руси, в это время говорили, что «Солнце пошло на лето, а зима на мороз», подразумевая, что Солнышко начало движение в сторону Северного полушария, однако морозы начинают крепчать и к Крещенью, 19 января, могут быть весьма сильными, оттого их и называют – «Крещенскими».

В старину вся жизни людей была организована по Солнечному циклу и поэтому для них в движении светила всё имело значение.

После Дня Зимнего Солнцестояния, склонение Солнца будет уменьшаться в течение трёх месяцев до дня весеннего равноденствия, со средней скоростью, аналогичной трём месяцем, предшествующим дню зимнего солнцестояния: в первый месяц – 0,1º в сутки, во второй – 0,3º в сутки, а за месяц до дня весеннего равноденствия – 0,4º в сутки.

Приблизительно через 13 дней после дня зимнего солнцестояния, а точнее 2 января 2021 г, в 13:51 часов, Земля будет находиться в точке перигелия и в это время от Земли до Солнца самое кратчайшее расстояние, однако, «не рукой подать», а 147 093 168 километров, что на 2,5 миллиона километров ближе среднего расстояния от Земли до Солнца, которое, как известно, равно 149 597 870,7 км (1 астрономическая единица). После прохождения точки перигелия скорость вращения Земли вокруг Солнца начнёт уменьшаться, а после прохождения точки афелия, 5 июля 2021 г, в 22:27 час, скорость вращения вокруг Солнца снова начнёт увеличиваться.

Казалось бы, если расстояние до Солнца наименьшее, то на Земле должно быть и теплее, однако, хотя с Земли Солнце действительно наблюдается большего размера, в Северном полушарии наблюдаются сильные морозы, а всё потому, что температура на Земле зависит не от расстояния до Солнца, а от наклона оси вращения Земли к плоскости орбиты.

Всем нашим читателям мы желаем развеселых Рождественских и Новогодних праздников и безболезненно пережить зиму.

Источник

Положение Солнца — Position of the Sun

Положение Солнца в небе является функцией как времени и географического расположения наблюдений на земной поверхности «s. Как околоземные орбиты на Солнце на протяжении более года , Солнце , кажется, двигаться по отношению к неподвижным звездам на небесной сфере , по круговой траектории , называемой эклиптикой .

Читайте также:  Снимки солнца за 5 лет

Вращение Земли вокруг своей оси вызывает суточное движение , так что кажется, что Солнце движется по небу по пути Солнца, который зависит от географической широты наблюдателя . Время, когда Солнце проходит через меридиан наблюдателя, зависит от географической долготы .

Таким образом, чтобы найти положение Солнца в данном месте в данный момент времени, можно проделать следующие три шага:

  1. вычислить положение Солнца в эклиптической системе координат ,
  2. преобразовать в экваториальную систему координат , и
  3. преобразовать в горизонтальную систему координат для местного времени и местоположения наблюдателя.

СОДЕРЖАНИЕ

Примерное положение

Эклиптические координаты

Эти уравнения из Астрономического альманаха можно использовать для расчета видимых координат Солнца , среднего равноденствия и эклиптики даты с точностью около 0 ° 0,01 (36 дюймов) для дат между 1950 и 2050 годами. закодированы в подпрограмму Fortran 90 в Ref. и используются для расчета зенитного угла Солнца и солнечного азимута в наблюдаемом с поверхности Земли.

Начните с вычисления n — количества дней (положительных или отрицательных, включая дробные дни) с полудня по Гринвичу по земному времени 1 января 2000 года ( J2000.0 ). Если известна юлианская дата нужного времени, то

п знак равно J D — 2451545,0 <\ displaystyle n = \ mathrm -2451545.0>

Средняя долгота Солнца, с поправкой на аберрации света , является:

L знак равно 280 460 ∘ + 0,9856474 ∘ п <\ displaystyle L = 280,460 ^ <\ circ>+0.9856474 ^ <\ circ>n>

Средняя аномалия Солнца ( на самом деле, Земли по своей орбите вокруг Солнца, но это удобно делать вид Солнца вокруг Земли), является:

грамм знак равно 357 528 ∘ + 0,9856003 ∘ п <\ displaystyle g = 357,528 ^ <\ circ>+0,9856003 ^ <\ circ>n>

Задайте и в диапазоне от 0 ° до 360 °, добавляя или вычитая кратные 360 ° по мере необходимости. L <\ displaystyle L> грамм <\ displaystyle g>

λ знак равно L + 1,915 ∘ грех ⁡ грамм + 0,020 ∘ грех ⁡ 2 грамм <\ displaystyle \ lambda = L + 1,915 ^ <\ circ>\ sin g + 0,020 ^ <\ circ>\ sin 2g>

β знак равно 0 <\ displaystyle \ beta = 0> ,

поскольку эклиптическая широта Солнца никогда не превышает 0,00033 °,

а расстояние от Солнца до Земли в астрономических единицах равно:

р знак равно 1.00014 — 0,01671 потому что ⁡ грамм — 0,00014 потому что ⁡ 2 грамм <\ Displaystyle R = 1.00014-0.01671 \ cos g-0.00014 \ cos 2g> .

Наклон эклиптики

Если угол наклона эклиптики нигде не получен, его можно приблизительно определить:

ϵ знак равно 23 439 ∘ — 0,0000004 ∘ п <\ displaystyle \ epsilon = 23,439 ^ <\ circ>-0,0000004 ^ <\ circ>n>

Экваториальные координаты

λ <\ displaystyle \ lambda> , и образуют полное положение Солнца в эклиптической системе координат . Это может быть превращено в экваториальной системе координат пути вычисления наклонения эклиптики , и продолжает: β <\ displaystyle \ beta> р <\ displaystyle R> ϵ <\ displaystyle \ epsilon>

α знак равно арктан ⁡ ( потому что ⁡ ϵ загар ⁡ λ ) <\ Displaystyle \ альфа = \ arctan (\ соз \ эпсилон \ загар \ лямбда)> , где находится в том же квадранте, что и , α <\ displaystyle \ alpha> λ <\ displaystyle \ lambda>

Чтобы получить RA в правом квадранте в компьютерных программах, используйте функцию Arctan с двойным аргументом, такую ​​как ATAN2 (y, x)

α знак равно арктан ⁡ 2 ( потому что ⁡ ϵ грех ⁡ λ , потому что ⁡ λ ) <\ Displaystyle \ альфа = \ arctan 2 (\ соз \ эпсилон \ грех \ лямбда, \ соз \ лямбда)>

δ знак равно Arcsin ⁡ ( грех ⁡ ϵ грех ⁡ λ ) <\ Displaystyle \ дельта = \ arcsin (\ грех \ эпсилон \ грех \ лямбда)> .

Прямоугольные экваториальные координаты

Правые прямоугольные экваториальные координаты в астрономических единицах равны:

Икс знак равно р потому что ⁡ λ <\ displaystyle X = R \ cos \ lambda> Y знак равно р потому что ⁡ ϵ грех ⁡ λ <\ Displaystyle Y = R \ соз \ эпсилон \ грех \ лямбда> Z знак равно р грех ⁡ ϵ грех ⁡ λ <\ Displaystyle Z = р \ грех \ эпсилон \ грех \ лямбда> Где ось находится в направлении мартовского равноденствия , ось — в сторону июньского солнцестояния , а ось — в направлении северного полюса мира . Икс <\ displaystyle X> Y <\ displaystyle Y> Z <\ displaystyle Z>

Горизонтальные координаты

Склонение Солнца с Земли

Обзор

Солнце, кажется, движется на север во время северной весны , пересекая небесный экватор в мартовское равноденствие . Его склонение достигает максимума, равного углу наклона оси Земли (23,44 °) во время июньского солнцестояния , затем уменьшается до минимума (-23,44 °) во время декабрьского солнцестояния , когда его значение является отрицательным для наклона оси. Эта вариация порождает времена года .

Линейный график склонения Солнца в течение года напоминает синусоиду с амплитудой от 23,44 °, а одна лопасти волны на несколько дней дольше , чем другие, среди других отличий.

Следующие явления произошли бы, если бы Земля была идеальной сферой , вращающейся по круговой орбите вокруг Солнца, и если бы ее ось была наклонена на 90 °, так что сама ось находилась в плоскости орбиты (аналогично Урану ). На одну дату в год, Солнце будет прямо над головой на Северный полюс , поэтому его склонение будет + 90 °. В течение следующих нескольких месяцев подсолнечная точка будет двигаться к Южному полюсу с постоянной скоростью, пересекая круги широты с постоянной скоростью, так что склонение Солнца будет линейно уменьшаться со временем. В конце концов, Солнце окажется прямо над Южным полюсом со склонением -90 °; тогда он начнёт двигаться на север с постоянной скоростью. Таким образом, график солнечного склонения, если смотреть с этой сильно наклоненной Земли, будет напоминать треугольную волну, а не синусоидальную волну, зигзагообразную между плюсами и минусами 90 °, с линейными сегментами между максимумами и минимумами.

Читайте также:  Когда солнце миновало зенит

Если осевой наклон на 90 ° уменьшается, то абсолютные максимальное и минимальное значения наклона уменьшатся, чтобы равняться осевому наклону. Кроме того, формы максимумов и минимумов на графике станут менее острыми, изогнувшись, чтобы напоминать максимумы и минимумы синусоидальной волны. Однако даже когда осевой наклон равен наклону реальной Земли, максимумы и минимумы остаются более острыми, чем у синусоидальной волны.

На самом деле, орбита Земли является эллиптической . Земля движется вокруг Солнца около перигелия в начале января быстрее , чем около афелия в начале июля. Это заставляет процессы, подобные изменению солнечного склонения, происходить в январе быстрее, чем в июле. На графике это делает минимумы более острыми, чем максимумы. Кроме того, поскольку перигелий и афелий не происходят в точные даты солнцестояний, максимумы и минимумы слегка асимметричны. Темпы изменений до и после не совсем равны.

Поэтому график видимого склонения Солнца по-разному отличается от синусоидальной волны. Как показано ниже, его точное вычисление связано с некоторыми трудностями.

Расчеты

Наклонение Солнца , δ , — это угол между лучами Солнца и плоскостью экватора Земли. Наклон оси Земли ( астрономы называют ее наклоном эклиптики ) — это угол между осью Земли и линией, перпендикулярной орбите Земли. Наклон оси Земли медленно меняется в течение тысяч лет, но его текущее значение ε = 23 ° 26 ‘почти постоянно, поэтому изменение солнечного склонения в течение одного года почти такое же, как и в течение следующего года.

Во время солнцестояний угол между лучами Солнца и плоскостью экватора Земли достигает максимального значения 23 ° 26 ‘. Следовательно, δ = + 23 ° 26 ‘в день северного летнего солнцестояния и δ = -23 ° 26′ в период южного летнего солнцестояния.

В момент каждого равноденствия центр Солнца, кажется, проходит через небесный экватор , а δ равно 0 °.

Склонение Солнца в любой момент рассчитывается по формуле:

δ ⊙ знак равно Arcsin ⁡ [ грех ⁡ ( — 23,44 ∘ ) ⋅ грех ⁡ ( E L ) ] <\ displaystyle \ delta _ <\ odot>= \ arcsin \ left [\ sin \ left (-23,44 ^ <\ circ>\ right) \ cdot \ sin \ left (EL \ right) \ right]>

где EL — долгота эклиптики (по сути, положение Земли на ее орбите). Поскольку эксцентриситет земной орбиты невелик, ее орбиту можно аппроксимировать как круг, что вызывает ошибку до 1 °. Приближение круга означает, что EL будет на 90 ° впереди солнцестояний на орбите Земли (в дни равноденствия), так что sin (EL) можно записать как sin (90 + NDS) = cos (NDS), где NDS — количество дни после декабрьского солнцестояния. Также используя приближение, что arcsin [sin (d) · cos (NDS)] близко к d · cos (NDS), получается следующая часто используемая формула:

δ ⊙ знак равно — 23,44 ∘ ⋅ потому что ⁡ [ 360 ∘ 365 ⋅ ( N + 10 ) ] <\ displaystyle \ delta _ <\ odot>= — 23,44 ^ <\ circ>\ cdot \ cos \ left [<\ frac <360 ^ <\ circ>> <365>> \ cdot \ left (N + 10 \ right )\верно]>

где N — день года, начинающийся с N = 0 в полночь по всемирному времени (UT), когда начинается 1 января (т.е. часть дней в порядковой дате -1). Число 10 в (N + 10) — это приблизительное количество дней после декабрьского солнцестояния до 1 января. Это уравнение переоценивает склонение около сентябрьского равноденствия до + 1,5 °. Аппроксимация синусоидальной функции сама по себе приводит к ошибке до 0,26 ° и не рекомендуется для использования в приложениях солнечной энергии. Формула Спенсера 1971 года (основанная на ряде Фурье ) также не рекомендуется из-за ошибки до 0,28 °. Дополнительная ошибка до 0,5 ° может возникнуть во всех уравнениях для равноденствий, если не использовать десятичный разряд при выборе N для корректировки времени после полуночи UT для начала этого дня. Таким образом, приведенное выше уравнение может иметь погрешность до 2,0 °, что примерно в четыре раза больше угловой ширины Солнца, в зависимости от того, как оно используется.

Склонение можно более точно рассчитать, если не делать двух приближений, используя параметры орбиты Земли для более точной оценки EL:

δ ⊙ знак равно Arcsin ⁡ [ грех ⁡ ( — 23,44 ∘ ) ⋅ потому что ⁡ ( 360 ∘ 365,24 ( N + 10 ) + 360 ∘ π ⋅ 0,0167 грех ⁡ ( 360 ∘ 365,24 ( N — 2 ) ) ) ] <\ displaystyle \ delta _ <\ odot>= \ arcsin \ left [\ sin \ left (-23,44 ^ <\ circ>\ right) \ cdot \ cos \ left (<\ frac <360 ^ <\ circ>> < 365,24>> \ left (N + 10 \ right) + <\ frac <360 ^ <\ circ>> <\ pi>> \ cdot 0,0167 \ sin \ left (<\ frac <360 ^ <\ circ>> <365,24 >> \ left (N-2 \ right) \ right) \ right) \ right]>

который можно упростить, оценив константы до:

δ ⊙ знак равно — Arcsin ⁡ [ 0,39779 потому что ⁡ ( 0,98565 ∘ ( N + 10 ) + 1,914 ∘ грех ⁡ ( 0,98565 ∘ ( N — 2 ) ) ) ] <\ displaystyle \ delta _ <\ odot>= — \ arcsin \ left [0,39779 \ cos \ left (0,98565 ^ <\ circ>\ left (N + 10 \ right) +1,914 ^ <\ circ>\ sin \ left ( 0,98565 ^ <\ circ>\ left (N-2 \ right) \ right) \ right) \ right]>

N — количество дней с полуночи UT, когда начинается 1 января (т. Е. Часть дней в порядковой дате -1), и может включать десятичные дроби для корректировки на местное время позже или раньше в течение дня. Число 2 в (N-2) — это приблизительное количество дней до перигелия Земли после 1 января . Число 0,0167 — текущее значение эксцентриситета орбиты Земли. Эксцентриситет очень медленно меняется во времени, но для дат, довольно близких к настоящему, его можно считать постоянным. Наибольшие ошибки в этом уравнении составляют менее ± 0,2 °, но менее ± 0,03 ° для данного года, если число 10 корректируется в большую или меньшую сторону в дробных днях, в зависимости от того, насколько далеко декабрьское солнцестояние предыдущего года произошло до или после. полдень 22 декабря. Эти точности сравниваются с продвинутыми расчетами NOAA, которые основаны на алгоритме Жана Миуса 1999 года с точностью до 0,01 °.

Читайте также:  Как увидеть солнце через телескоп

(Приведенная выше формула связана с достаточно простым и точным вычислением уравнения времени , которое описано здесь .)

Более сложные алгоритмы корректируют изменения эклиптической долготы, используя термины в дополнение к поправке на эксцентриситет 1-го порядка, описанной выше. Они также исправляют наклон 23,44 °, который очень незначительно меняется со временем. Поправки также могут включать влияние Луны на смещение положения Земли от центра орбиты пары вокруг Солнца. После определения склонения относительно центра Земли применяется дополнительная поправка на параллакс , которая зависит от расстояния наблюдателя от центра Земли. Эта поправка меньше 0,0025 °. Погрешность вычисления положения центра Солнца может быть менее 0,00015 °. Для сравнения, ширина Солнца около 0,5 °.

Атмосферная рефракция

Вышеописанные расчеты склонения не включают эффекты преломления света в атмосфере, из-за которых видимый угол возвышения Солнца, видимый наблюдателем, оказывается выше фактического угла возвышения, особенно при малых возвышениях Солнца. Например, когда Солнце находится на высоте 10 °, кажется, что оно находится под углом 10,1 °. Наклонение Солнца может использоваться вместе с его прямым восхождением для расчета его азимута, а также его истинного возвышения, которое затем может быть скорректировано на преломление, чтобы определить его видимое положение.

Уравнение времени

В дополнение к ежегодному колебанию видимого положения Солнца с севера на юг, соответствующему описанному выше изменению его склонения, существует также меньшее, но более сложное колебание в направлении восток-запад. Это вызвано наклоном оси Земли, а также изменениями скорости ее орбитального движения вокруг Солнца, вызванными эллиптической формой орбиты. Основными эффектами этого колебания с востока на запад являются изменения во времени таких событий, как восход и закат, а также в чтении солнечных часов по сравнению с часами, показывающими местное среднее время . Как показано на графике, солнечные часы могут быть быстрее или медленнее примерно на 16 минут по сравнению с часами. Поскольку Земля вращается со средней скоростью в один градус каждые четыре минуты относительно Солнца, это 16-минутное смещение соответствует сдвигу на восток или запад примерно на четыре градуса видимого положения Солнца по сравнению с его средним положением. Смещение на запад заставляет солнечные часы опережать время.

Поскольку основной эффект этого колебания касается времени, его называют уравнением времени , используя слово «уравнение» в несколько архаичном смысле, означающем «исправление». Колебания измеряются в единицах времени, минутах и ​​секундах, что соответствует количеству, на которое солнечные часы опережают часы. Уравнение времени может быть положительным или отрицательным.

Аналемма

Аналемма представляет собой диаграмма , которая показывает годовые изменения положения Солнца на небесной сфере , относительно среднего положения, как видно из фиксированного места на Земле. (Слово аналемма также иногда, но редко, используется в других контекстах.) Его можно рассматривать как изображение видимого движения Солнца в течение года , которое напоминает восьмерку. Аналемму можно изобразить, наложив фотографии, сделанные в одно и то же время дня с разницей в несколько дней в течение года .

Аналемму также можно рассматривать как график склонения Солнца , обычно отображаемый вертикально, против уравнения времени , нанесенного горизонтально. Обычно масштабы выбираются так, чтобы равные расстояния на диаграмме представляли равные углы в обоих направлениях на небесной сфере. Таким образом, 4 минуты (точнее 3 минуты 56 секунд) в уравнении времени представлены таким же расстоянием, как 1 ° в склонении , поскольку Земля вращается со средней скоростью 1 ° каждые 4 минуты относительно Солнца. .

Аналемма нарисована так, как если бы наблюдатель смотрел вверх на небе. Если вверху показан север , то справа — запад . Обычно это делается даже тогда, когда аналемма отмечена на географическом глобусе , на котором континенты и т. Д. Показаны с запада влево.

Некоторые аналеммы отмечены, чтобы показать положение Солнца на графике в разные даты с интервалом в несколько дней в течение года. Это позволяет аналемме , которые будут использоваться , чтобы сделать простые аналоговые вычисления величин , такими как время и азимуты от восхода и захода солнца . Аналеммы без даты используются для корректировки времени, показываемого солнечными часами .

Источник

Adblock
detector