Меню

Самый простой экспериментальный метод определения температуры излучающей поверхности солнца

—> Детская Энциклопедия —>

Как измерили температуру Солнца

Спектр любого твердого тела, нагретого до любой температуры, можно измерить спектро­метром. Этот прибор представляет собой слегка измененный спектроскоп.

В фокальной плоскости линзы L2 установ­лена пластина с узкой вертикальной щелью В (см. Откуда берется цвет? ). Если трубу D поворачивать вокруг вертикальной оси, то через щель В будет проходить свет только узких участков сплошного спектра. Перед щелью А коллиматора установлена лампа накаливания, а за щелью Вболометр: очень тонкая, зачерненная металлическая полоска, которая одинаково поглощает световые лучи с любой длиной волны.

Чем больше энергии излучения поглощает болометр, тем сильнее он нагревается и тем больше становится его электрическое сопро­тивление. Электрическое сопротивление боло­метра легко измерить и тем самым определить, какую энергию испускает нить лампы в раз­личных участках спектра.

Попытаемся построить график, в котором будет отражено, как зависит энергия, излучаемая 1 см 2 абсолютно черного тела, от длины волны (рис. 10). В излучении абсолютно черного тела невозможно обнаружить энергию, соответ­ствующую излучению волны со строго опреде­ленной длиной. Поэтому приходится изме­рять энергию излучения в каком-то узком участке спектра, например в диапазоне от λ 1 до λ 2. Если эту энергию разделить на ширину участка λ 2— λ 1 ,то определится излучательная способность ελ

абсолютно черного тела для волны длиной λ , лежащей между волнами λ 1 и λ 2.

Отложим значение ε λ по оси ординат, а по оси абсцисс — длину волны λ . Получим кривую с максимумом.

Предположим, мы построили график зави­симости (рис. 11) для тела, нагретого до 6000° К (фотосфера Солнца). Самое большое значение el будет при длине волны λ m=0,5 мк. В обе стороны от этой точки регистрируемая в спектрометре энергия будет убывать. Будем двигаться к крас­ной границе солнечного спектра. Уже в области 0,7—0,75 мк красный цвет переходит в темноту. Но и в темных участках болометр будет пока­зывать, что энергия продолжает поступать. Значит, на красной границе спектр Солнца не заканчивается, хотя излучения с длиной волны больше 0,75 мк человеческий глаз не воспри­нимает.

Здесь начинаются невидимые инфракрас­ные лучи — инфракрасная область оптиче­ского спектра. Инфракрасное излучение при­мерно в области 500 мк переходит в диапазон радиоволн (см. ст. «Радио»).

То же происходит и на другом конце спект­ра. За фиолетовыми лучами в области волн в 0,4 мк начинается невидимое ультрафиолетовое излучение, которое где-то около волн в 0,002 мк переходит в рентгеновские лучи (см. Откуда берется цвет? ). Спектральные области наиболее ко­ротких ультрафиолетовых лучей и наиболее длинных рентгеновских лучей накладываются друг на друга.

Инфракрасную область света излучают спек­трометром, призма которого изготовлена из кристалла каменной (поваренной) соли. Даже специальные сорта стекла (тяжелый флинт) полностью поглощают инфракрасное излуче­ние, начиная с волн длиной в 2,7 мк. А каменная соль пропускает это излучение с длиной волны до 13,5 мк. В инфракрасном спектрометре вме­сто линз поставлены вогнутые металлические зеркала, хорошо отражающие инфракрасные лучи.

Ультрафиолетовое излучение исследуют с помощью оптических деталей из кварца или флюорита. Кварц слабо поглощает это излучение до волны в 0,18 мк, а флюорит — до 0,12 мк.

Поместим перед спектрометром с призмой из каменной соли абсолютно черное тело, у ко­торого температура внутренних стенок полости равна 100° Ц. Такое тело не светится даже в пол­ной темноте, но болометр, установленный у выходной щели спектрометра, позволяет и в этом случае определить зависимость ε λ от дли­ны волн. Максимум излучательной способно­сти тела, нагретого до 100°Ц, соответствует длине волны в 7,8 мк. Опыты показали: чем выше температура полости, тем короче должна быть длина волны λ m (рис. 10). Величина λ m как бы смещается с ростом температуры в сторону более коротких волн.

В результате этих опытов и некоторых тео­ретических соображений немецкому физику Вильгельму Вину удалось вывести формулу, которая теперь называется законом смещения Вина: λ mТ = 2897 мк•°К. Если в эту формулу подставить λ m в микронах, определится величина Т — температура излучающего нагретого тела в градусах Кельвина. С помощью спектроскопа можно измерить температуру любого тела, даже температуру Солнца или звезды.

Иначе, как с помощью спектрометра, узнать температуру Солнца невозможно. Нельзя же установить на Солнце термометр! Но, допустим, мы как-то добыли кусочек Солнца. Из какого же материала сделать термометр? Даже самый ту­гоплавкий металл — вольфрам плавится при 3000°К. Поэтому температуру Солнца можно определить только измерением λ m. Так же опре­деляется температура звезд, а в земных условиях — температура сильно нагретых тел, на­пример раскаленной плазмы (см. ст. «Сто мил­лионов градусов»).

Источник

Спектр и температура Солнца

В физике имеется понятие абсолютно черного тела, под которым подразумевается тело, полностью поглощающее весь падающий на него поток излучения и само способное излучать энергию во всех диапазонах электромагнитных волн. Излучение абсолютно черного тела характеризуется непрерывным, или сплошным, спектром. Солнце излучает энергию во всех длинах волн, от гамма-излучения до радиоволн. Видимая, или визуальная, часть солнечного спектра представляет собой спектр поглощения, непрерывный фон которого создается излучением солнечной фотосферы. Следовательно, к Солнцу применимы законы излучения абсолютно черного тела. Как мы уже писали на нашем сайте polnaja-jenciklopedija.ru в статье о методах космических исследований, это позволяет установить многие характеристики Солнца, в частности температуру его фотосферы.

По одному из таких законов, закону Вина, температура солнечной фотосферы T = 6000 К. Наиболее обоснованная оценка температуры фотосферы получается из закона Стефана — Больцмана, который гласит: мощность излучения с единицы поверхности абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, т. е. i = σТ 4 , где σ = 5,67*10 -8 Вт/ (м 2 *К 4 ) — постоянная величина. Так как радиус Солнца RΘ = 6,96*10 5 км = 6,96*10 8 м, то площадь всей солнечной поверхности SΘ =4πR 2 . С этой поверхности мощность излучения энергии 4*10 26 Вт; отсюда следует, что температура солнечной фотосферы:

Читайте также:  Чем лучше защитить кожу от солнца

Подставив в эту формулу указанные выше значения величин, получим, что Г = 5800 К.

Вычисленная по закону Стефана — Больцмана температура называется эффективной температурой. Она несколько отличается от найденной по закону Вина, в котором используется узкий участок спектра. Однако такое различие несущественно, так как при столь высокой температуре фотосфера находится в газообразном состоянии и бурное перемешивание в ней газа приводит к непостоянству температуры различных ее участков. Поэтому среднее значение температуры солнечной фотосферы можно считать близкой к 6000 К.

Темные линии поглощения в спектре Солнца (фраунго-феровы линии) вызываются поглощением света в нижних слоях разреженной газовой оболочки, окружающей фотосферу. Эта газовая оболочка хорошо видна невооруженным глазом при полных солнечных затмениях, когда Луна полностью заслоняет солнечный диск-фотосферу. Эта оболочка поднимается над фотосферой на высоту почти до 10 000 км, имеет красновато-розоватый цвет и поэтому называется хромосферой (от греч. «хроматос»—цвет). Наблюдения показали, что в момент покрытия Луной солнечного диска непрерывный фон солнечного спектра, создаваемый излучением фотосферы, исчезает, а темные фраунгоферовы линии превращаются в яркие линии излучения — спектр вспышки. Такое поведение солнечного спектра вполне объясняется законом Кирхгофа. Яркие линии излучения образуются горячим разреженным газом хромосферы. Вне полных солнечных затмений свет от фотосферы проходит сквозь разреженный газ хромосферы, а так как температура ее нижних слоев меньше температуры фотосферы и близка к 4800 К, то на месте линий излучения фотосферы появляются линии поглощения.

Атомы поглощают и излучают энергию квантами. При поглощении квантов атомы получают энергию, возбуждаются, а затем излучают ее и переходят в обычное состояние. Энергия каждого, кванта пропорциональна частоте, т. е. Е = = hv, причем постоянная величина h = 6,62*10 -34 Дж*с называется постоянной Планка, по имени немецкого физика М. Планка (1858—1947), впервые применившего ее в 1900 г.

В зависимости от условий атомы разных химических элементов излучают и поглощают кванты только со строго определенными значениями частоты, а им соответствуют определенные длины волн. Так, в визуальной части солнечного спектра хорошо видны линии, соответствующие излучению атомов нейтрального водорода (линии серии Бальмера, см. с. 22), а также линии нейтрального гелия (λ = 5876Å (желтая линия), λ = 4922 Å (зеленая линия) и др. В ультрафиолетовом диапазоне солнечного спектра расположены линии серии Бальмера с меньшей длиной волны (вплоть до ее границы с λ = 3646 Å), а за этой серией находятся линии нейтрального водорода серии Лаймана с длинами волн от 1216 А до 912 Å (граница серии).

Для излучения серии Лаймана атомы водорода должны получить извне значительно большую энергию, чем для излучения серии Бальмера. Ультрафиолетовый диапазон солнечного спектра поглощается земной атмосферой, но он неоднократно фотографировался с орбитальных научных станций. Оказалось, что на его коротковолновом участке с длиной волны менее 1680 Å непрерывный фон становится очень слабым и спектр состоит преимущественно из многочисленных ярких (эмиссионных) линий.

Если энергия, полученная атомом, достаточно велика, то атом частично или даже полностью ионизируется. Температура, при которой начинается однократная ионизация, называется температурой ионизации, и для различных химических элементов она разная. Так, ионизация водорода начинается при температуре около 15 000 К, ионизация гелия — при 30 000 К, а кальция — даже при 4000 К. Поэтому в спектре Солнца присутствуют линии водорода, нейтрального гелия и однократно ионизованного кальция, причем очень интенсивные, так как все атомы кальция, присутствующие в солнечной хромосфере, уже ионизованы.

В спектре Солнца присутствуют линии свыше 70 химических элементов, известных на Земле, в том числе углерода, кислорода, натрия, калия, алюминия, железа и др.

Интересна история открытия гелия. В 1868 г. во время полного солнечного затмения французский астроном П. Жансен (1824—1907 гг.) обнаружил в спектре вспышки (в спектре хромосферы) яркую желтую линию неизвестного на Земле химического элемента. В том же году такое же открытие независимо сделал английский астроном Дж. Локьер (1836— 1920 гг.), который назвал этот химический элемент гелием, т. е. солнечным (от греч. «гелиос» — солнце). И только в 1895 г. английский химик У Рамзай (1852—1916 гг.), наблюдая спектр излучения газов, выделившихся из редкого минерала клевейта, обнаружил в нем желтую линию гелия. В дальнейшем из этих газов гелий был выделен в чистом виде.

Таким образом, уже тогда методы спектрального анализа подтвердили свою силу. Теперь они позволили с большой точностью определить химический состав Солнца. В настоящее время установлено, что масса Солнца состоит на 70% из водорода, на 28% из гелия, а оставшаяся доля принадлежит более тяжелым химическим элементам. А поскольку атомы водорода наиболее интенсивно излучают красный свет, а атомы гелия — желтый, то состоящая из этих разреженных газов хромосфера имеет красновато-розовый цвет.

Источник

Как измерили температуру солнца.

Как измерили температуру звезд.

Одна из легко измеряемых звёздных характеристик — цвет. Как раскалённый металл меняет свой цвет в зависимости от степени нагрева, так и цвет звезды всегда указывает на её температуру. В астрономии применяют абсолютную шкалу температур, шаг которой — один кельвин (1 К) -тот же, что и в привычной нам шкале Цельсия (1 °С) , а начало шкалы сдвинуто на -273 (0 К = -273 °С) .

Самые горячие звёзды — всегда голубого и белого цвета, менее горячие — желтоватого, холодные — красноватого. Но даже наиболее холодные звёзды имеют температуру 2-3 тыс. Кельвинов — горячее любого расплавленного металла.

Читайте также:  Оппозиция транзитное солнце натальный нептун

Человеческий глаз способен лишь грубo определить цвет звезды. Для более точных оценок служат фотографические и фотоэлектрические приёмники излучения, чувствительные к различным участкам видимого (или невидимого) спектра. Ведь цвет звезды зависит от того, на какой участок спектра приходится наибольшая энергия излучения. Сравнение звёздных величин в разных интервалах спектра (например, в голубом и жёлтом) позволяет количественно охарактеризовать цвет звезды и оценить её температуру.

Как измерили температуру солнца.

По закону оптики «Закону Вина» существует чёткая зависимость максимума интенсивности излучения по спектру частот от температуры излучающего объекта. На этом принципе основан и ИК радиометр (прибор ночного видения) , выделяющий ИК излучение из спектра, и прибор термосканер для определения температуры тела на расстоянии.
Поэтому, определяя максимум излучения по спектру частот спектра Солнца, определили, что температура верхних слоёв Солнца, поставлящих нам свет (Фотосфера) имеет температуру около 6 тыс градусов С (в глубинах Солнца по расчётам, температура составляет миллионы градусов) . Также термосканерами (специальными астрофизическими) опрделяют температуру поверхности и других тел в Космосе (планет, звёзд. )

Дата добавления: 2015-08-09 ; просмотров: 2186 | Нарушение авторских прав

Источник

Солнце и солнечная постоянная

Солнце можно разделить на внутреннюю часть и атмосферу. Температура внутренней части превышает 5 ∙10 6 . Здесь возника­ют термоядерные реакции перехода водорода в гелий. Энергия этих реакций распространяется из недр Солнца путем поглощения и пе­реизлучения световых квантов вышележащими слоями. В верхнем слое (толщиной около 100 000 км) этой части, называемом конвек­тивной зоной, перенос энергии осуществляется также путем кон­векции (скорость подъема горячих масс газа и опускания холодных масс -1- 2м/с).

Атмосфера Солнца состоит из трех слоев. Самый нижний слой толщиной 100—300 км носит название фотосферы. Она представля­ет собой сильно ионизированный газ с температурой 5000—6000 К и давлением на верхней границе около 100 гПа. Фотосфера излучает практически всю энергию, поступающую на Землю от Солнца. Выше фотосферы расположена хромосфера, простирающаяся до вы­соты 10 000—15 000 км, и солнечная корона, представляющая со­бой почти полностью ионизированный газ — плазму (с числом час­тиц в 1 см 3 около 3 ∙10 7 у основания короны и около 200 вблизи ор­биты Земли).

Температура Солнца понижается с увеличением расстояния от центра его лишь до верхней границы фотосферы. В хромосфере тем­пература возрастает с увеличением высоты, сначала медленно (до десятков тысяч Кельвинов), а затем быстро, и достигает миллиона Кельвинов на границе между хромосферой и солнечной короной.

Повышение температуры в хромосфере и короне принято объяс­нять рассеянием энергии звуковых и других волн, которые возника­ют в конвективной зоне.

Скорость истечения плазмы вблизи Солнца относительно мала (порядка десятков километров в секунду), затем она возрастает и вблизи орбиты Земли достигает нескольких сотен километров в се­кунду. Поток заряженных частиц — корпускул, летящих от Солнца во всех направлениях, получил название солнечного ветра.

Солнечная атмосфера, и в частности фотосфера, весьма неодно­родна и неспокойна. В ней наблюдаются факелы, флоккулы, хромосферные вспышки и другие процессы, являющиеся источниками корпускулярных потоков, более сильных, чем солнечный ветер. Особенно резко возрастает корпускулярное и электромагнитное из­лучение Солнца при хромосферных вспышках продолжительностью от нескольких минут до нескольких часов. Плотность вещества в местах вспышки значительно больше, чем в окружающих областях хромосферы, а скорость движения корпускул достигает 1000 км/с. При определенной ориентации такой поток корпускул через 1—2 сут достигает Земли и вызывает магнитные бури, полярные си­яния и другие геофизические явления. Во время вспышки сильно возрастает интенсивность рентгеновского и радиоволнового излуче­ния, а также излучения в некоторых участках ультрафиолетовой и видимой областей спектра.

В фотосфере возникают относительно холодные образования (с температурой около 4600 К) неправильной формы с очень сильны­ми магнитными полями, получившими название солнечных пятен. Они обычно появляются группами в широтных зонах 35—5° по обе стороны от солнечного экватора и существуют от нескольких часов до нескольких месяцев.

Весь комплекс кратко описанных нестационарных явлений в солнечной атмосфере называют солнечной активностью. Для ее ко­личественной характеристики используются различные индексы. Наиболее распространенный среди них — число Вольфа W, пропор­циональное сумме общего числа пятен f удесятеренного числа их групп g:

где k — эмпирический коэффициент.

Число Вольфа обнаруживает колебания во времени со средним периодом около 11 лет (при изменении отдельных периодов от 7 до 17 лет). Такие колебания свойственны и другим проявлениям сол­нечной активности и обусловленным ею геофизическим явлениям. Число Вольфа во время минимума солнечной активности изменяет­ся от 0 до 11, а во время максимума — от 40 до 240. В течение 11-летнего цикла меняется не только число солнечных пятен, но и положение зоны их образования. Кроме колебания с периодом око­ло 11 лет, наблюдения позволили выявить ряд колебаний солнечной активности с другими периодами (27 сут, 22 года, 80—90 лет).

Важнейшее значение имеет проблема выяснения связи солнеч­ной активности с процессами и явлениями в земной атмосфере — так называемая проблема солнечно-земных связей. По этой пробле­ме за последние десятилетия выполнено много исследований. Одна­ко в целом она еще не решена. В частности, остается неясным меха­низм связи с солнечной активностью погодообразующих процессов, наблюдаемых в тропосфере и стратосфере.

Весь спектр излучения Солнца принято делить на ряд областей (в скобках указаны граничные длины волн λ):

1) гамма-излучение (λ -5 мкм);

2) рентгеновское излучение (10 -5 мкм -2 мкм);

3) ультрафиолетовая радиация (0,01 мкм

радиоволновое излучение (λ > 0,3 см).

Выделяют также ближний ультрафиолетовый (0,29—0,39 мкм) и ближний инфракрасный (0,76—2,4 мкм) участки спектра.

Большая часть(свыше 95 %) излучения Солнца приходится на область так называемого оптического окна (0,29—2,4 мкм), включа­ющего видимый, ближние ультрафиолетовый и инфракрасный уча­стки спектра. Эта область носит название оптического окна по той причине, что именно здесь земная атмосфера наиболее прозрачна для солнечного излучения (пропускает около 80 %), в то время как излучение в дальних ультрафиолетовой и инфракрасной областях (на которые приходится около 1 и 3,6 %) полностью или почти пол­ностью поглощается атмосферой. Отметим попутно, что, помимо волн оптического диапазона атмосфера прозрачна также для радио­волнового излучения в интервале длин волн 1—20 см.

Читайте также:  Потому что мое солнце стало луной

Излучательная способность Солнца близка к излучательной спо­собности абсолютно черного тела с температурой около 5800 К. В табл. 5.1 и на рис. 5.3 приведено распределение по длинам волн сол­нечной радиации на верхней границе земной атмосферы. Однако из­лучение Солнца близко к излучению абсолютно черного тела только в видимой и ближних инфракрасной и ультрафиолетовой областях спектра. В интервале 0,29—0,21 мкм излучение Солнца убывает с длиной волны быстрее, чем у черного тела. Однако далее оно убыва­ет медленнее, и уже вблизи λ≈ 0,1 мкм Солнце излучает в 2—3 раза больше энергии, чем черное тело.

При λ * λ0 сол.радиации на верх­ней границе атмосферы (при I * 0= 1,353 кВт/м2) и доля (Dλ) потока солнечной радиации во всем интервале длин волн короче λ

Рис. 5.3. Спектральная плотность I * λ0 потока солнечной радиации на верхней границе

атмосферы. I-по данным Такаекары и Драммонда (1970), 2 — по данным Джонсона (1954).

Интенсивность излучения Солнца в области очень коротких волн (особенно интенсивность рентгеновского излучения) подвержена резким колебаниям во времени — в десятки и сотни раз в 11-летнем цикле солнечной активности. Эти колебания, несмотря на малую энергию, оказывают определенное влияние на процессы, протекаю­щие в самых верхних слоях земной атмосферы. Однако вклад рент­геновского излучения, равно как и радиоволнового, которое подвер­жено еще более значительным колебаниям, в общий поток солнеч­ной радиации ничтожно мал. По этой причине даже резкие колеба­ния этих излучений практически не сказываются на интегральном потоке солнечной радиации, для которого характерно постоянство во времени.

Считая Солнце по своим характеристикам близким к абсолютно черному телу, можно оценить температуру Солнца. При этом раз­ные методы дают несколько различные результаты. Максимум излучательной способности Солнца приходится на видимый участокспектра, на длину волны λт =0,4738мкм. На основании закона Вина получаем так называемую цветовую температуру Солнца: Тс = 6116 К

Второй метод определения температуры Солнца основан на фор­муле (5.1.17) для потока излучения и на понятии солнечной посто­янной. Количество солнечной радиации, поступающее в единицу времени на единичную поверхность на верхней границе земной ат­мосферы, перпендикулярную солнечным лучам, при среднем рас­стоянии Земли от Солнца, называется солнечной постоянной. Обо­значим солнечную постоянную через I * 0 значение солнечной постоянной вследствие тех больших трудностей, которые возника­ют при ее определении, не установлено до настоящего времени.

Широкие возможности для определения I*0оявились в послед­ние десятилетия на основе наблюдений потока солнечной радиации с помощью ИСЗ. Согласно новейшим данным актинометрических измерений на спутниках, наиболее вероятное значение солнечной постоянной заключено в интервале 1,368 — 1,377 кВт/м 2 (макси­мальный разброс составляет 1,322 — 1,428 кВт/м 2 при отсутствии какой-либо регулярности изменения во времени — отсюда и термин „солнечная постоянная»).

Международная комиссия по радиации рекомендовала принять в качестве стандартного значения солнечной постоянной (по Меж­дународной пиргелиометрической шкале 1956 г.)

К. Я. Кондратьев и Г. А. Никольский на основе данных измере­ний на аэростатах, поднимавшихся до высоты около 30 км, получили (путем экстраполяции аэростатных данных за пределы атмосфе­ры) для I*0 6 кВт/м2. Не исключено, что солнечная по­стоянная испытывает некоторые изменения во времени под влияни­ем колебаний активности Солнца. По К. Я. Кондратьеву и Г. А. Ни­кольскому, наибольшее значение /0 наблюдается при W = 90. 100. При значениях числа Вольфа вне этого интервала солнечная посто­янная уменьшается, при этом максимальное отклонение достигает 2 %.

Наряду с понятием солнечной постоянной, включающей энер­гию всех длин волн (ее называют также астрономической солнечной постоянной), некоторые авторы (Дж. Джордж, С. И. Сивков) пред­ложили ввести понятие метеорологической солнечной постоянной. Последняя представляет собой поток солнечной радиации на верх­ней границе атмосферы в спектральном интервале 0,346—2,4 мкм. Из спектра солнечной радиации исключается, таким образом, та часть излучения, которая никогда не достигает тропосферы и не оказывает влияния на ее тепловой режим. Метеорологическая сол­нечная постоянная равна по Джорджу 1,26 кВт/м 2 , по Сивкову 1,25 кВт/м 2 .

Если известно значение солнечной постоянной, то можно под­считать поток излучения Солнца Bс. Обозначим через г0 среднее расстояние Земли от Солнца (г0= 149,5 млн. км), через а радиус Солнца (а = 696,6 тыс. км).

Каждый квадратный метр сферы радиусом г0 получает за 1 с энергию I*0; количество энергии, получаемое всей сферой радиусом Го, равно количеству энергии, излучаемой Солнцем

Зная поток Bс и приравнивая его σТс 4 , находим температуру фо­тосферы Солнца: Tс = 5805 К. Температура Солнца, определенная по значениям I * 0и Bс, носит название эффективной или радиаци­онной температуры. При практических расчетах температуру Солнца полагают равной 6000 К.

Количество энергии, излучаемое Солнцем, распределяется меж­ду различными участками спектра следующим образом: ультрафио­летовая область (λ 0,76 мкм) — 44 %.

Из изложенного выше следует, что Солнце излучает энергию в широком диапазоне длин волн. Однако свыше 99 % этой энергии приходится на участок спектра, заключенный между 0,10 и 4 мкм. Солнечную радиацию по этой причине часто называют коротковол­новой, в отличие от инфракрасной (длинноволновой) радиации Зем­ли и атмосферы, свыше 99 % которой приходится на интервал длин волн от 3—4 до 80—120 мкм.

Источник

Adblock
detector