Какая температура во Вселенной самая высокая?
Каждый атом во Вселенной любит тепло. Мельчайшие частички материи любят тепло настолько, что атомы и субатомные частицы вибрируют все сильнее и движутся все быстрее, когда они горячие. Чем они горячее, тем быстрее движутся. И точно так же, чем они холоднее, тем они медленнее. При абсолютном нуле (-273 градусов по Цельсию) все движения атомов полностью останавливаются. Холоднее быть не может — это самая низкая температура. Сделать что-то холоднее — это как пытаться сделать прямую стрелку еще прямее.
Что самое горячее во Вселенной?
А вот что касается самых горячих температур во Вселенной, самое горячее, что только можно представить (и увидеть), находится гораздо ближе к нам, чем вы думали. Самое горячее место находится на Земле, и это Большой адронный коллайдер (БАК). Когда он сталкивает частицы золота между собой, на долю секунды температура достигает 7,2 триллиона градусов Фаренгейта. В цельсиях это 4 триллиона. Это горячее, чем взрыв сверхновой.
Что может быть еще горячее?
Теоретически, температура может быть еще выше. Первым претендентом на самую высокую температуру будет температура Планка, которая равна 10 32 Кельвинов, или 100 миллионов миллионов миллионов миллионов миллионов градусов. Перечитайте, сколько миллионов, еще раз. Такую температуру просто невозможно представить. Как и это число. Одно дело, когда температура тысячу градусов или даже триллион. Но вот столько? Как это вообще? У нас нет слов, которые сравнивают такие большие вещи. Сказать, что 10 32 Кельвинов — это горячо, это как сказать, что вселенная занимает некоторое пространство.
Почему температура Планка может быть максимальной?
Потому что настолько жарко может быть в нормальной физике. Если будет еще жарче, обычная физика работать не будет. Начнут происходить странные вещи. Гравитационная сила станет такой же сильной, как и три другие природные силы (электромагнетизм, сильная и слабая ядерная силы), и они сольются в одну единую силу. Чтобы понять, как и почему это происходит, нам нужно изобрести «теорию всего» — важнейшую для современной теоретической физики. Этого мы пока совсем не понимаем.
Температура, при которой разрушается сама материя
Температура Хагедорна — это самая высокая температура, которую, как мы думаем, мы сможем достичь. Это та точка, в которой адронная материя (вся нормальная, обычная материя во вселенной, в отличие от темной, например) перестает быть стабильной и попросту разваливается. Мы достигаем этой точки примерно в 2х 10 12 Кельвинов. Что примечательно, некоторые физики-теоретики утверждают, что в этот момент адронная материя не «испаряется», а переходит в другую форму материи — кварковую. И вот ее-то можно нагревать и дальше. Единственное но: мы не знаем, существует она на самом деле.
Максимальная температура в теории струн
Специалисты из области теории струн утверждают, что самая горячая температура — это 10 30 Кельвинов. Это чуть холоднее, чем наш предыдущий претендент. Теоретики струн считают, что самые простые частички нашей вселенной состоят не из обычных частиц, с которыми мы знакомы, а из вибрирующих струн.
К сожалению, проверить предсказания теории струн невозможно. Как и максимальную возможную температуру. Поэтому однозначного и точного ответа на этот вопрос быть не может. Но упомянутые выше варианты, по мнению физиков, будут самыми лучшими.
Если вам была интересна эта статья, почитайте еще, почему в космосе холодно, если там столько горячих звезд. Ведь Солнце очень горячее, да?
Источник
Видео: Какая звезда во Вселенной горячее Солнца на 200 000 градусов
Взгляните на чистое ночное небо. Там тысячи звезд, далеких и ярких, которые озаряют небо холодным, словно стальным, светом. Но так ли холодны звезды, как нам кажется? На самом деле все наоборот — они настолько горячие, что некоторые могут согревать соседние планеты. Такой является наше Солнце. Температура его поверхности доходит до 5 500°С, и оно греет Землю так, что тут стала возможна жизнь. А какая звезда самая горячая во Вселенной? О ней рассказывается в видеоролике ниже.
Речь пойдет о WR102, которая на 200 000 градусов горячее нашего светила. Это яркая звезда находится в созвездии Стрельца, но без мощного телескопа ее не увидеть — она слишком далеко, на расстоянии 10 000 световых лет. WR102 относится к редкому классу звезд Вольфа—Райе. Обычно звезды существуют за счет водорода, который преобразуется в легкие или тяжелые элементы, такие как гелий, сера, магний или фосфор. В процессе вырабатывается много энергии. Но всему приходит конец, и когда водород полностью иссякает, звезда превращается в белого карлика — светило, которое не имеет больше энергии. И оно тихо погибает, готовясь к своей финальной точке — взрыву, который оставит после звезды лишь туман и сгустки пыли.
Но есть редкие белые карлики, которые, не имея водорода, могут вырабатывать жар за счет иных элементов: кислорода, углерода или азота. WR102 — это кислородная звезда, и она очень редкая. Звезда раскалена до 210 000°С и светит ярче Солнца в 380 000 раз. Откуда же звезда берет силы для такой мощности? Все дело в кислороде, который соединяется с неоном и углеродом, производя много энергии. На данный момент такие звезды как WR102 можно пересчитать по пальцам — их всего 9, и 4 из них в нашей галактике.
Сколько же осталось жить этой невероятной звезде, прежде чем она переродится в сверхновую и взорвется? По расчетам ученых, ей осталось всего 1500 лет — вечность для человека, но капля в море для космоса. Сейчас WR102 немного меньше Солнца, но из-за высокого жара и бурных химических процессов на поверхности звезды всегда гуляет сильный звездный ветер. Он уносит в космос много звездного вещества, и светило теряет в объемах. Так за несколько месяцев WR102 может потерять столько, сколько весит наша планета. При такой интенсивности за 10 000 лет звезда лишится в массе вещества, которого хватило бы на Солнце. А знаете ли вы, как выглядит звезда Кастор, состоящая из 6 светил?
Источник
Самая высокая температура во Вселенной. Спектральные классы звезд
Вещество нашей Вселенной структурно организовано и образует большое многообразие феноменов различного масштаба с весьма сильно разнящимися физическими свойствами. Одно из важнейших таких свойств – температура. Зная этот показатель и используя теоретические модели, можно судить о многих характеристиках того или иного тела – о его состоянии, строении, возрасте.
Разброс значений температуры у различных наблюдаемых компонентов Вселенной весьма велик. Так, самая низкая величина ее в природе зафиксирована для туманности Бумеранг и составляет всего 1 K. А каковы самые высокие температуры во Вселенной, известные на сегодняшний день, и о каких особенностях различных объектов свидетельствуют? Для начала посмотрим, как же ученые определяют температуру удаленных космических тел.
Спектры и температура
Всю информацию о далеких звездах, туманностях, галактиках ученые получают, исследуя их излучение. По тому, на какой частотный диапазон спектра приходится максимум излучения, определяется температура как показатель средней кинетической энергии, которой обладают частицы тела, – ведь частота излучения связана прямой зависимостью с энергией. Так что самая высокая температура во Вселенной должна отражать, соответственно, и наибольшую энергию.
Чем более высокими частотами характеризуется максимум интенсивности излучения, тем горячее исследуемое тело. Однако полный спектр излучения распределен по очень широкому диапазону, и по особенностям видимой его области («цвету») можно делать определенные общие выводы о температуре, например, звезды. Окончательная же оценка производится на основе изучения всего спектра с учетом полос эмиссии и поглощения.
Спектральные классы звезд
На основе спектральных особенностей, включая цвет, была разработана так называемая Гарвардская классификация звезд. Она включает семь основных классов, обозначаемых буквами O, B, A, F, G, K, M и несколько дополнительных. Гарвардская классификация отражает поверхностную температуру звезд. Солнце, фотосфера которого разогрета до 5780 K, относится к классу желтых звезд G2. Наиболее горячи голубые звезды класса O, самые холодные – красные – принадлежат классу M.
Гарвардскую классификацию дополняет Йеркская, или классификация Моргана-Кинана-Келлман (МКК – по фамилиям разработчиков), подразделяющая звезды на восемь классов светимости от 0 до VII, тесно связанных с массой светила – от гипергигантов до белых карликов. Наше Солнце – карлик класса V.
Примененные совместно, в качестве осей, по которым отложены значения цвет – температура и абсолютная величина – светимость (свидетельствующая о массе), они дали возможность построить график, широко известный как диаграмма Герцшпрунга-Рассела, на котором отражены главные характеристики звезд в их взаимосвязи.
Самые горячие звезды
Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).
Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона – звезды Альнитак, – которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) – R136a1 в Большом Магеллановом облаке – оценена в 53 000 K.
Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.
Термоядерные топки космоса
В ядрах массивных звезд, стиснутых колоссальным давлением, развиваются действительно высокие температуры, достаточные для нуклеосинтеза элементов вплоть до железа и никеля. Так, расчеты для голубых гигантов, сверхгигантов и очень редких гипергигантов дают для этого параметра к концу жизни звезды порядок величины 10 9 K – миллиард градусов.
Строение и эволюция подобных объектов пока еще недостаточно хорошо изучены, соответственно и модели их еще далеко не полны. Ясно, однако, что очень горячими ядрами должны обладать все звезды больших масс, к каким бы спектральным классам они ни принадлежали, – например, красные сверхгиганты. Несмотря на несомненные различия в процессах, протекающих в недрах звезд, ключевым параметром, определяющим температуру ядра, является масса.
Звездные остатки
От массы в общем случае зависит и судьба звезды – то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, – белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.
Гигантские звезды ждет иная судьба – взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 10 11 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда – очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч – до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда – не то место, где температура – самая высокая во Вселенной.
Далекие экзотические объекты
Существует класс космических объектов, достаточно удаленных (а значит, и древних), характеризующихся совершенно экстремальными температурами. Это квазары. По современным воззрениям, квазар представляет собой сверхмассивную черную дыру, обладающую мощным аккреционным диском, образуемым падающим на нее по спирали веществом – газом или, точнее, плазмой. Собственно, это активное галактическое ядро в стадии формирования.
Скорость движения плазмы в диске настолько велика, что вследствие трения она разогревается до сверхвысоких температур. Магнитные поля собирают излучение и часть вещества диска в два полярных пучка – джета, выбрасываемых квазаром в пространство. Это чрезвычайно высокоэнергетический процесс. Светимость квазара в среднем на шесть порядков выше светимости самой мощной звезды R136a1.
Теоретические модели допускают для квазаров эффективную температуру (то есть присущую абсолютно черному телу, излучающему с той же яркостью) не более 500 миллиардов градусов (5×10 11 K). Однако недавние исследования ближайшего квазара 3C 273 привели к неожиданному результату: от 2×10 13 до 4×10 13 K – десятки триллионов кельвинов. Такая величина сравнима с температурами, достигающимися в явлениях с наивысшим известным энерговыделением – в гамма-всплесках. На сегодняшний день это самая высокая температура во Вселенной, которая была когда-либо зарегистрирована.
Жарче всех
Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.
Если вернуться к самому моменту ее рождения — приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, — мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.
Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10 -43 секунд. Самый горячий объект в эту эпоху – сама наша Вселенная, с планковской температурой 1,4×10 32 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.
Источник