Строение Солнца. 1. Внутреннее
По современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80 процентов пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхности Солнца и в его атмосферу.
Внутреннее строение Солнца
Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится 1.ядро, затем 2.область лучевого переноса энергии, далее 3.конвективная зона и, наконец, 4.атмосфера. К ней ряд исследователей относят три внешние области: 4а.фотосферу, 4б.хромосферу и 4с.корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.
1.Ядро — центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.
2.Область лучистого переноса энергии — находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах — гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.
3.Конвективная область Солнца
Конвективная область — располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.
Источник
Решебник по астрономии 11 класс на урок №19 (рабочая тетрадь) — Солнце как звезда
вкл. 28 Ноябрь 2016 .
Решебник по астрономии 11 класс на урок №19 (рабочая тетрадь) — Солнце как звезда
1. Руководствуясь схемой строения Солнца, укажите названия внутренних областей и слоёв атмосферы Солнца.
1 | Зона ядерных реакций | 4 | Фотосфера |
2 | Зона переноса лучистой энергии | 5 | Хромосфера |
3 | Зона конвекции | 6 | Корона |
(4, 5, 6) | Атмосфера | 7 | Солнечный ветер |
2. Заполните таблицу с основными характеристиками Солнца.
Параметры | Величины |
Среднее расстояние от Земли | 1 а. е. |
Линейный диаметр | 109 D |
Видимый угловой диаметр | 32′ |
Масса | 330000 M |
Солнечная постоянная | 1.37 кВт/м 2 |
Светимость | 3,85 ⋅ 10 26 Вт |
Температура видимого внешнего слоя | 5800 К |
Химический состав внешних слоёв | -73% — H, — 25% — He, -2% — др. |
Период вращения | 25 сут — у экватора, 30 сут — у полюса |
Температура в центре Солнца | -15 000 000 К |
Абсолютная звёздная величина | -48 |
Возраст | -4,57 млрд лет |
Средняя плотность | 1,41 ⋅ 10^3 кг/м 3 |
3. Определите линейный радиус Солнца (в радиусах Земли и километрах). Угловой радиус фотосферы и расстояние от Земли до Солнца Считайте известными.
4. Определите массу Солнца, если Земля обращается вокруг Солнца на расстоянии 1 а. е. с периодом один год. Орбиту Земли считайте круговой.
5. Звезда Ригель из созвездия Орион излучает света примерно в 60 тыс. раз больше нашего Солнца. Объясните почему же тогда Солнце выглядит ярче, чем Ригель?
Решение: Солнце — ближайшая к нам звезда, и она в 23 млн раз ближе, чем Ригель.
6. Определите светимость Солнца, если солнечная постоянная равна 1370 Вт/м, а расстояние от Земли до Солнца — 1 а. е.
7. Определите температуру фотосферы, если светимость Солнца равна 3,85 ⋅ 10 26 и радиус Солнца — 696 тыс. км.
Источник
Строение Солнца
Солнце — самая близкая к нам звезда и главная звезда Солнечной системы. В данной статье будет рассмотрено строение Солнца как рядовой звезды вселенной.
Схема строения Солнца
- Протуберанец;
- Видимая поверхность Солнца. Плотность меньше — 1/1000000 г/см куб, температура 6000 К, давление 1/6 атмосферы;
- Конвективная зона. По мере приближения к поверхности Солнца температура быстро уменьшается. В результате происходит конвекция — перемешивание вещества и перенос энергии к поверхности светила самим веществом;
- Зона переноса энергии излучением. Она представляет собой как бы стенки ядерного котла, через которые энергия медленно просачивается наружу;
- Ядро Солнца — естественный термоядерный реактор, где происходит выделение энергии за счет превращения водорода в гелий. В центре ядра: плотность — 160 г/см куб, температура — 15 млн К, давление — 340 млрд атмосфер, т.е. условия точно такие, какие нужны для работы ядерного реактора;
- Фотосфера — из нее исходит большая часть излучаемой Солнцем энергии в видимой области спектра;
- Хромосфера — плотность и давление с высотой убывают, а температура возрастает;
- Корона — самый верхний слой атмосферы Солнца — состоит из чрезвычайно разреженной плазмы. Она постоянно расширяется в окружающее пространство и переходит в солнечный ветер. Во внутренней короне 1 млн К и выше.
Слои и их особенности
Внутреннее строение Солнца слоистое, т.е. состоит из ряда сфер, или областей. В центре находится ядро, затем область лучевого переноса энергии, далее конвективная зона и, наконец, атмосфера. К ней ряд исследователей относят три внешние области: фотосферу, хромосферу и корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону.
Ядро — центральная часть Солнца со сверхвысоким давлением и температурой, которые облегчают течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.
Область лучистого переноса энергии — находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так: из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах — гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.
Конвективная область — располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.
Фотосфера — это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000 К (т. е. абсолютная температура), а у верхней границы, расположенной примерно в 300 км выше, порядка 5000 К. Средняя температура фотосферы принимается в 5700 К. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.
Через прозрачный воздух фотосферы в телескоп отчетливо просматривается ее основание — контакт с массой непрозрачного воздуха конвективной области. Поверхность раздела имеет зернистую структуру, называемую грануляцией . Зерна, или гранулы, имеют поперечники от 700 до 2000 км. Положение, конфигурация и размеры гранул меняются. Наблюдения показали, что каждая гранула в отдельности выражена лишь какое-то короткое время (около 5-10 мин.), а затем исчезает, заменяясь новой гранулой. На поверхности Солнца гранулы не остаются неподвижными, а совершают нерегулярные движения со скоростью примерно 2 км/сек. В совокупности светлые зерна (гранулы) занимают до 40% поверхности солнечного диска.
Процесс грануляции представляется как наличие в самом нижнем слое фотосферы непрозрачного газа конвективной области — сложной системы вертикальных круговоротов. Светлая ячея — это поступающая из глубины порция более разогретого газа по сравнению с уже охлажденной на поверхности, а потому и менее яркой, компенсационно погружающейся вниз. Яркость гранул на 10-20% больше окружающего фона указывает на различие их температур в 200-300° С.
Образно грануляцию на поверхности Солнца можно сравнить с кипением густой жидкости типа расплавленного гудрона, когда со светлыми восходящими струями появляются пузырьки воздуха, а более темные и плоские участки характеризуют погружающиеся порции жидкости.
Исследования механизма передачи энергии в газовом шаре Солнца от центральной области к поверхности и ее излучение в космическое пространство показали, что она переносится лучами. Даже в конвективной зоне, где передача энергии осуществляется движением газов, большая часть энергии переносится излучением.
Таким образом, поверхность Солнца, излучающая энергию в космическое пространство в световом диапазоне спектра электромагнитных волн, — это разреженный слой газов фотосферы и просматривающаяся сквозь нее гранулированная верхняя поверхность слоя непрозрачного газа конвективной области. В целом зернистая структура, или грануляция, признается свойственной фотосфере — нижнему слою солнечной атмосферы.
Хромосфера. При полном солнечном затмении у самого края затемненного диска Солнца видно розовое сияние — это хромосфера. Она не имеет резких границ, а представляет собой сочетание множества ярких выступов или языков пламени, находящихся в непрерывном движении. Хромосферу сравнивают иногда с горящей степью. Языки хромосферы называют спикулами. Они имеют в поперечнике от 200 до 2000 км (иногда до 10000) и достигают в высоту нескольких тысяч километров. Их надо представлять себе как вырывающиеся из Солнца потоки плазмы (раскаленного ионизированного газа).
Установлено, что переход от фотосферы к хромосфере сопровождается скачкообразным повышением температуры от 5700 К до 8000 — 10000 К. К верхней же границе хромосферы, находящейся приблизительно на высоте 14000 км от поверхности солнца, температура повышается до 15000 — 20000 К. Плотность вещества на таких высотах составляет всего 10-12 г/см3, т. е. в сотни и даже тысячи раз меньше, чем плотность нижних слоев хромосферы.
Солнечная корона — внешняя атмосфера Солнца. Некоторые астрономы называют ее атмосферой Солнца. Она образована наиболее разреженным ионизированным газом. Простирается примерно на расстояние 5 диаметров Солнца, имеет лучистое строение, слабо светится. Ее можно наблюдать только во время полного солнечного затмения . Яркость короны примерно такая же, как у Луны в полнолуние, что составляет лишь около 5/1000000 долей яркости Солнца. Корональные газы в высокой степени ионизированы, что определяет их температуру примерно в 1 млн. градусов. Внешние слои короны излучают в космическое пространство корональный газ — солнечный ветер. Это второй энергетический (после лучистого электромагнитного) поток Солнца, получаемый планетами. Скорость удаления коронального газа от Солнца возрастает от нескольких километров в секунду у короны до 450 км/сек на уровне орбиты Земли, что связано с уменьшением силы притяжения Солнца при увеличении расстояния. Постепенно разреживаясь по мере удаления от Солнца, корональный газ заполняет все межпланетное пространство. Он воздействует на тела Солнечной системы как непосредственно, так и через магнитное поле, которое несет с собой. Оно взаимодействует с магнитными полями планет. Именно корональный газ (солнечный ветер) является основной причиной полярных сияний на Земле и активности других процессов магнитосферы.
Источник