Об этом не говорят нигде: Российские учёные создали ядерный двигатель для межпланетных полётов
Почему это настоящая фантастика рассказывает военный обозреватель «СП» Владислав Шурыгин
Одна из главных мировых космических новостей странным образом осталась вне фокуса общественного внимания. А она, между тем, имеет, без всякой натяжки, планетарное значение — 11 декабря «Роскосмос» заключил контракт стоимостью 4,2 миллиарда рублей на разработку аванпроекта космического ядерного буксира «Нуклон» для полетов к Луне, Юпитеру и Венере. И сделано это было после того, как были завершены работы и наземные испытания первого в мире космического ядерного двигателя. Об этом было ранее сообщено в акте приёмки, размещённом на сайте госзакупок. В документе сказано, что «работы выполнены в полном объёме, результаты соответствуют требованиям технического задания. …Были выявлены закономерности функционирования элементов и узлов перспективных систем отвода тепла ЯЭДУ мегаваттного класса в наземных условиях, максимально приближенных к условиям космического пространства».
Что значат эти сухие строки?
Много лет ядерная энергодвигательная установка мегаваттного класса (ЯЭДУ) — перспективный двигатель для космических аппаратов — считалась аббревиатурой из области научной фантастики, фигурирующей в романах про отдалённое будущее. С помощью ЯЭДУ космолёты совершали перелёты по солнечной системе. Именно ядерный двигатель позволит совершать межпланетные полёты в несколько раз быстрее, чем сейчас. Тот же полёт на Марс на тяге ядерно-ионных двигателей займёт уже не месяцы, а лишь несколько недель. Но главное, что с его появлением будет преодолено «проклятие» химических двигателей — необходимость транспортировки многих сотен тонн горючего и окислителя, делающих космические корабли для дальнего космоса настоящими техническими одноразовыми мастодонтами. Ядерный двигатель почти полностью снимает эту проблему. Принцип его работы заключается в том, что компактный ядерный реактор вырабатывает тепловую энергию, которая с помощью турбины преобразуется в электрическую, которая в свою очередь нужна для того, чтобы питать энергией ионные электрореактивные двигатели и оборудование корабля. Всего одной загрузки реактора — несколько сотен килограммов ядерного топлива — хватит на несколько полётов на Марс и обратно.
И вот теперь этот двигатель создан! И создан в России, русскими учёными и инженерами! Фактически с созданием этой технологии цивилизация перешла на новую ступень своего развития — эру освоения солнечной системы непосредственно людьми.
Попытки создать такой двигатель велись с середины прошлого века многими странами. Наиболее продвинулись в этом направлении СССР и США. Но американцы так и не смогли решить главную проблему ядерного двигателя — создать систему охлаждения в космическом безвоздушном пространстве, и работы в итоге свернули. В СССР, наоборот, был проведён целый ряд исследований и испытаний, в результате чего была разработана принципиально новая схема отвода тепла. С помощью уникального генератора холодильник-излучатель формирует капельные струйки горячего теплоносителя, который охлаждается на пути к гидросборнику и, собираясь в нём, направляется снова в рабочий контур. Подобная технология не предусматривает использования труб и таким образом облегчает конструкцию системы охлаждения.
К созданию ЯЭДУ наши конструкторы в упор подошли в конце 80-х, и не случись развал Союза, первый прототип ядерного двигателя был бы испытан еще в начале 90-х. Но Союз распался. В России к власти пришли проходимцы и воры ельцинской команды, и все работы были свёрнуты почти на двадцать лет. Только в 2010 году, после доклада Путину, снова началось финансирование проекта. Инициатором создания ЯЭДУ называют академика отделения физико-технических проблем энергетики РАН, бывшего генерального директора ФГУП «Исследовательский центр им. Келдыша» Анатолия Коротеева. Головным разработчиком атомной энергодвигательной установки является Научно-исследовательский и конструкторский институт энерготехники им. Н. А. Доллежаля (НИКИЭТ).
Основой ЯЭДУ был выбран реактор на быстрых нейтронах с газовым охлаждением. По предъявляемым характеристикам реактор — высокотемпературный и должен выдерживать разогрев до 1 200 градусов Цельсия. Теплоноситель — смесь гелия (78%) и ксенона (22%), топливом служит уран. И для охлаждения его необходимо было создать и испытать космический генератор капель — главную деталь холодильника-излучателя (КХИ).
И вот спустя десять лет мы вышли на финишную прямую. Ядерный двигатель создан, и это позволит на порядок увеличить электрическую мощность на любых космических аппаратах. А это, в свою очередь, даёт возможность использовать ракетные двигатели повышенной мощности — ещё один неизменный элемент фантастических романов — ионные двигатели, которые теперь тоже стали реальностью. Такие двигатели — ИД-500 — были созданы и испытаны в государственном научном центре им. Келдыша в 2014 году!
Теперь, после заключения контракта с Роскосмосом, предстоит работа по созданию аванпроекта космического ядерного буксира «Нуклон» — соединения всех этих уникальных технологий в испытательный прототип космического корабля будущего. «Реализация этого проекта позволит на базе уже имеющегося задела поднять отечественную технику на принципиально новый уровень, во многом опережающий зарубежные разработки», — заявил в октябре 2009 года на заседании комиссии по модернизации глава «Роскосмоса» (в 2004—2011 годах) Анатолий Перминов. Сегодня эти слова становятся реальностью!
Источник
Проект ТЭМ: ядерный реактор и электроракетный двигатель для космоса
Один из самых смелых проектов последних лет в сфере космических технологий развивается, и появляются поводы для хороших новостей. На днях стало известно о завершении работ по проекту «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса». Теперь ученым предстоит провести ряд последующих работ, и конечным результатом станет появление полноценного модуля, пригодного к эксплуатации.
Отчет о работе
В конце июля «Роскосмос» утвердил отчет за 2018 г., указывающий основные направления деятельности и успехи организации. Среди прочего в отчете упомянут проект «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса», разрабатывавшийся в рамках Госпрограммы «Космическая деятельность России на 2013-2020 годы».
Согласно отчету, выполнение этого проекта было завершено в прошлом году. В рамках этих работ подготовлена конструкторская документация, изготовлены и испытаны отдельные изделия. Пока речь идет о компонентах будущего макета наземного прототипа транспортно-энергетического модуля (ТЭМ).
На этом работы по созданию ТЭМ не останавливаются. Все дальнейшие мероприятия будут осуществляться в рамках существующей федеральной космической программы. К сожалению, в отчете «Роскосмоса» не приводятся технические подробности проекта ТЭМ в его нынешнем виде, а также не указываются сроки выполнения работ. Впрочем, эти данные известны из других источников.
История вопроса
Согласно отчету «Роскосмоса», работы по теме ТЭМ продолжаются и скоро должны выйти на новый этап. Это означает, что планы по созданию принципиально новой ракетно-космической техники, утвержденные почти 10 лет назад, будут выполнены в обозримом будущем.
Идея транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) в ее нынешнем виде была предложена в 2009 г. Разработка этого изделия должна была осуществляться предприятиями «Роскосмоса» и «Росатома». Ведущую роль в проекте играют ракетно-космическая корпорация «Энергия» и ФГУП «Центр Келдыша».
В 2010 г. проект стартовал, начались первые исследовательские и конструкторские работы. На тот момент утверждалось, что основные компоненты ЯЭДУ и ТЭМ будут готовы к концу десятилетия. Эскизный проект ТЭМ подготовили в 2013 г. В 2014-м начались испытания компонентов ЯЭДУ и ионного двигателя ИД-500. В дальнейшем неоднократно появлялись сообщения о тех или иных работах и успехах. Строились и испытывались различные элементы ЯЭДУ и ТЭМ, а также осуществлялся поиск сфер применения новой техники.
По мере проработки проекта ТЭМ в открытых источниках регулярно публиковались изображения, показывающие примерный облик этого изделия. Последний раз подобные материалы появлялись в ноябре прошлого года. Любопытно, что этот вариант облика заметно отличался от предыдущих, хотя и имел некоторое сходство в основных чертах.
Технические особенности
Транспортно-энергетический модуль рассматривается в качестве многоцелевого средства для работы в космосе, как на орбитах Земли, так и на других траекториях. С его помощью в будущем планируется выводить полезную нагрузку на орбиты или отправлять к другим небесным телам. Также ТЭМ может использоваться для обслуживания космических аппаратов или в борьбе с космическим мусором.
ТЭМ получит раздвижные несущие фермы, за счет которых будут обеспечены необходимые габариты. На фермах предлагается монтировать энергоблок с реакторной установкой, приборно-агрегатный комплекс, стыковочные средства, солнечные батареи и т.д. В хвостовой части модуля будут располагаться маршевые и маневровые электроракетные двигатели. Полезная нагрузка будет перевозиться при помощи стыковочных устройств.
Основной компонент ТЭМ – ЯЭДУ мегаваттного класса, разрабатываемая с 2009 г. Реактор установки должен отличаться особой стойкостью к температурным нагрузкам, что связано с особыми режимами его работы. В качестве теплоносителя выбрана гелий-ксеноновая смесь. Тепловая мощность установки достигнет 3,8 МВт, электрическая – 1 МВт. Для сброса лишнего тепла предлагается использовать капельный холодильник-излучатель.
Электроэнергия от ядерной установки должна подаваться на электроракетный двигатель. На стадии испытаний находится перспективный ионный двигатель ИД-500. При КПД до 75% он должен показывать мощность 35 кВт и тягу до 750 мН. На испытаниях в 2017 г. изделие ИД-500 отработало на стенде 300 ч на мощности 35 кВт.
Согласно данным прошлых лет, ТЭМ в рабочем положении будет иметь длину более 50-52 м при диаметре (по раскрытым фермам и элементам на них) свыше 20 м. Масса – не менее 20 т. Вывод такого модуля на околоземную орбиту будет осуществляться при помощи одной или нескольких ракет-носителей с последующей сборкой. Затем с ним должна стыковаться полезная нагрузка. Расчетный срок службы, ограниченный ресурсом реактора, составляет 10 лет.
Большие перспективы
Главной особенностью ТЭМ с ЯЭДУ, принципиально отличающей его от другой ракетно-космической техники, является высочайший удельный импульс. Применение особой энергоустановки и электроракетного двигателя позволяет получать требуемые параметры тяги при минимальном расходе ядерного топлива. Таким образом, ТЭМ в теории способен решать задачи, недоступные для традиционных ракетных систем на химическом топливе.
Благодаря этому появляется возможность более активного использования маршевых и маневровых двигателей на всем протяжении полета. В частности, это позволяет использовать более выгодные траектории полета к другим небесным телам. 10-летний срок эксплуатации позволяет многократно применять ТЭМ в разных миссиях, сокращая расходы на их организацию. В целом появление систем наподобие ТЭМ с ЯЭДУ даст космонавтике новые возможности во всех основных сферах деятельности.
Штатные двигатели ТЭМ должны использовать только часть электроэнергии от генерирующих систем. Соответственно, остается крупный запас мощности, пригодной для использования целевым оборудованием.
Однако имеются и существенные недостатки. Прежде всего, это необходимость разработки целого ряда новых технологий и общая сложность проекта. Вследствие этого создание ТЭМ требует много времени и соответствующее финансирование. Так, проект «Роскосмоса» разрабатывается около 10 лет, но практическое применение готового ТЭМ все еще относится к отдаленному будущему. Общая стоимость проекта оценивается в 17 млрд рублей.
Применение ядерной энергоустановки приводит к серьезным ограничениям на разных этапах. К примеру, испытания готовой ЯЭДУ или ТЭМ в целом возможны только на орбитах, что позволит минимизировать ущерб от возможных нештатных ситуаций. То же касается и эксплуатации готового транспортно-энергетического модуля.
Обозримое будущее
Согласно последним новостям, разработка проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса» успешно завершена. Уже готовы некоторые макетные образцы, необходимые для проведения испытаний. В ближайшие годы предприятиям из состава «Роскосмоса» и «Росатома» предстоит провести ряд важнейших работ с этими и другими изделиями.
Летный прототип ТЭМ планируется построить в 2022-23 гг. После этого должны стартовать различные испытания, на которые уйдет несколько лет. Полноценный запуск эксплуатации ТЭМ ожидается в 2030 г.
В конце июня стало известно о подготовке площадки для эксплуатации ТЭМ. Такую технику будут запускать с космодрома Восточный. Не так давно был объявлен конкурс на разработку и строительство комплекса средств для подготовки космических аппаратов и транспортно-энергетического модуля. Конструкторская документация на технический комплекс должна быть разработана в 2025-26 гг. Строительство планируется запустить в 2027-м, а ввод в эксплуатацию состоится в 2030-м. Стоимость контракта – 13,2 млрд рублей.
Таким образом, различные работы по теме перспективной ракетно-космической техники с ЯЭДУ будут продолжаться в течение всего следующего десятилетия. Одним организациям предстоит завершить разработку и провести испытания транспортно-энергетического модуля, тогда как другие будут готовить инфраструктуру для его эксплуатации. По результатам всех этих работ в 2030 г. в распоряжении российской космической отрасли окажется принципиально новая техника с широкими возможностями. Впрочем, сложность всех этапов многообещающей программы может привести к изменению графика.
Источник
«Революционная разработка»: в чём уникальность российской космической ядерной установки
Российские учёные успешно испытали систему охлаждения ядерной энергодвигательной установки мегаваттного класса. Об этом сообщается в акте приёмки, размещённом на сайте госзакупок. В документе подчёркивается, что «работы выполнены в полном объёме, результаты соответствуют требованиям технического задания».
«Были выявлены закономерности функционирования элементов и узлов перспективных систем отвода тепла ЯЭДУ мегаваттного класса в наземных условиях, максимально приближенных к условиям космического пространства», — говорится в акте.
В документе уточняется, что специалисты изготовили и испытали экспериментальные образцы генератора капель, элементов заборного устройства (гидросборника) и модели капельного холодильника-излучателя (КХИ).
Разработкой КХИ занимаются ФГУП «Исследовательский центр им. Келдыша», Центр космических технологий Московского авиационного института, ОАО «РКК «Энергия» им. Королёва» и Московский энергетический институт.
ЯЭДУ — перспективный двигатель для космических аппаратов, который позволит совершать межпланетные полёты в несколько раз быстрее, чем сейчас. С его помощью Россия получит возможность проводить исследования Луны, Марса, дальних планет Солнечной системы и создавать там автоматические базы.
«Принцип работы ЯЭДУ заключается в том, что компактный ядерный реактор вырабатывает тепловую энергию, которая с помощью турбины преобразуется в электрическую. Она нужна для того, чтобы питать энергией ионные электрореактивные двигатели и оборудование», — пояснил в беседе с RT младший научный сотрудник НИИ ядерной физики им. Скобельцына МГУ Василий Петров.
Не имеет аналогов в мире
На современных двигателях низкопотенциальное (избыточное) тепло, которое может повредить бортовую аппаратуру, выводится в окружающее пространство (космос) через трубы панельных радиаторов, где циркулирует жидкость-теплоноситель. Такая система охлаждения представляет собой громоздкую конструкцию, не защищённую к тому же от попадания метеоритов.
Российские учёные изобрели принципиально новую схему отвода тепла. С помощью генератора холодильник-излучатель формирует капельные струйки горячего теплоносителя, который охлаждается на пути к гидросборнику и, собираясь в нём, направляется снова в рабочий контур. Подобная технология не предусматривает использования труб и таким образом облегчает конструкцию системы охлаждения.
«Успешное испытание системы охлаждения означает, что российским учёным удалось решить ключевую проблему на пути создания ЯЭДУ. Дело в том, что у атомной силовой установки один большой недостаток — она очень сильно нагревается. Если на Земле ядерный реактор охлаждается под напором воды, то в космосе такая возможность отсутствует», — сказал Петров.
Инициатором создания ЯЭДУ считается академик отделения физико-технических проблем энергетики РАН, бывший генеральный директор ФГУП «Исследовательский центр им. Келдыша» Анатолий Коротеев. Головной разработчик атомной энергодвигательной установки — Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля (НИКИЭТ).
Создание ЯЭДУ ведётся в рамках запущенного в 2010 году проекта транспортно-энергетического модуля (ТЭМ), над которым работают предприятия «Росатома» и «Роскосмоса». Согласно графику комиссии по модернизации при президенте РФ, опытный образец ядерного реактора мегаваттного класса должен появиться до конца 2018 года. В материалах «Росатома» подчёркивается, что данный проект не имеет аналогов в мире.
«Реализация этого проекта позволит на базе уже имеющегося задела поднять отечественную технику на принципиально новый уровень, во многом опережающий зарубежные разработки», — заявил в октябре 2009 года на заседании комиссии по модернизации глава «Роскосмоса» (в 2004—2011 годах) Анатолий Перминов.
Как сообщил ранее генеральный конструктор НИКИЭТ доктор технических наук Юрий Драгунов, в основу ЯЭДУ лёг накопленный с 1960-х годов опыт создания ядерных ракетных двигателей, термоэлектрических энергоустановок и эксплуатации всевозможной космической техники. Мощность первого образца ядерной энергодвигательной установки он оценил в 1 МВт.
Однако, как заявил Драгунов, в недалёком будущем Россия сможет производить 10-мегаваттные установки, «что подразумевает практически неограниченные возможности энергетики для космоса». По его словам, ЯЭДУ будет обладать более высоким коэффициентом полезного действия, так как тепловая энергия реактора не будет направляться на разогрев газовой смеси.
В процессе работы над космической атомной установкой специалисты ФГУП «НИИ НПО «Луч» (Подольск) впервые в мире разработали промышленную технологию создания монокристаллических длинномерных трубок из тугоплавких металлов (молибден, вольфрам, тантал, ниобий) и сплавов. Данное изобретение позволяет изготавливать агрегаты двигателей, способных работать при температуре 1500 °C.
«Очень востребованные разработки»
Василий Петров рассказал, что достижения при разработке ЯЭДУ и ТЭМ позволят создать управляемый с Земли необитаемый космический аппарат, который сможет быстрее и эффективнее транспортировать различные грузы на другие планеты и выполнять функции межорбитального буксира. Сегодня для аналогичных целей используется разгонный блок «Фрегат».
«Надо понимать, что «Фрегат» — это одноразовый аппарат, расходующий гигантское количество топлива. После выполнения своей задачи он сгорает. Конечно, это недешёвое удовольствие. Гораздо экономичнее иметь в космосе многоразовое транспортное средство, которое человек будет использовать по необходимости, причём на протяжении десятков лет. Это будет по-настоящему революционная разработка», — пояснил Петров.
Как полагает эксперт, ядерная энергодвигательная установка не несёт опасности для окружающей среды. Отработавший свой ресурс реактор может быть отправлен на «орбиту захоронения», куда уводятся аппараты после выхода из строя. Также Петров не исключает, что через десятки лет человечество изобретёт технологию утилизации ЯЭДУ.
«Создание компактных мощных ядерных реакторов и прогресс в системах охлаждения наверняка окажут серьёзный положительный эффект на развитие промышленности и экономики России. Это очень востребованные разработки в сфере энергетики, которые должны найти применение в самых разных сферах», — отметил Петров.
В беседе с RT военный эксперт Юрий Кнутов предположил, что ЯЭДУ и научно-технический прогресс, связанный с его изобретением, могут заинтересовать Минобороны РФ. По его мнению, технологический рывок, который совершили российские учёные, применим для совершенствования электромагнитного оружия, а также источников энергии для нужд ВКС и ВМФ.
«Ядерная энергия вполне может использоваться при разработке оружия с электромагнитным импульсом и как источник питания для различных средств разведки. Также эти наработки пригодятся для создания более эффективных и простых в эксплуатации морских силовых установок. Речь идёт о «вечном» ядерном реакторе с ресурсом на весь жизненный цикл атомной подлодки», — заявил Кнутов.
Эксперт также отметил, что в ближайшее время не стоит ожидать создания межпланетного корабля из-за невозможности на данный момент обеспечить 100%-ную защиту человека от солнечной радиации на расстоянии свыше 500 км от Земли. Кроме того, вспышки на Солнце будут пагубно влиять не только на экипаж, но и на электронику.
«Пока говорить о возможности создания корабля с ЯЭДУ преждевременно. Чтобы защитить экипаж, ему потребуется свинцовый корпус толщиной несколько метров. В итоге корабль будет громоздким и чрезвычайно дорогим. Конечно, никто в это вкладывать деньги не будет. Но прогресс не стоит на месте. С изобретением лёгкого прочного средства защиты перед Россией и человечеством откроются действительно невероятные перспективы», — резюмировал Кнутов.
Источник