Зонд «Паркер» поставил новый рекорд близости к Солнцу
NASA / Johns Hopkins University Applied Physics Laboratory
Зонд «Паркер» совершил шестой по счету близкий пролет мимо Солнца, поставив новые рекорды близости к звезде и скорости движения рукотворного космического аппарата. Он оказался всего в 13,5 миллионах километров от фотосферы светила, что эквивалентно 35 расстояниям от Земли до Луны, и вновь успешно собрал научные данные, которые вскоре передаст на Землю, сообщается на сайте миссии.
Солнечный зонд «Паркер» был запущен в космос в августе 2018 года. Он предназначен для изучения и определения параметров солнечного ветра вдоль своей траектории, а также исследования внешних слоев звезды, и за семь лет работы должен совершить 24 оборота вокруг Солнца, все больше сближаясь с ним. Для того, чтобы аппарат сохранял работоспособность в условиях высоких температур и мощных потоков заряженных частиц, он оснащен многослойным теплозащитным щитом, за которым укрыты научные приборы, и системой охлаждения.
За два года работы «Паркер» совершил пять сближений с Солнцем и получил немало интересных данных, в частности показал движение солнечного ветра, увидел пылевой след астероида Фаэтон и комету NEOWISE, помог понять механизмы ускорения частиц около Солнца и впервые обнаружить заряженные частицы, рождающиеся на границе между быстрым и медленным солнечным ветром.
11 июля 2020 года зонд совершил третий пролет вблизи Венеры, 25 сентября начал шестое тесное сближение с Солнцем, а 27 сентября пролетел на минимальном расстоянии около 13,5 миллионов километров от фотосферы звезды, двигаясь со скоростью 466592 километров в час, установив новые рекорды по близости к Солнцу и скорости движения рукотворного космического аппарата. Ожидается, что в середине декабря 2024 года зонд практически войдет в атмосферу Солнца, оказавшись на расстоянии около шести миллионов километров от условной поверхности звезды, что в семь раз ближе, чем перигелий орбиты Меркурия, это позволит получить уникальные научные данные.
Текущее положение зонда на диаграмме «Расстояние от Солнца—день полета».
Источник
Космический зонд отправят за тысячу астрономических единиц от Солнца
Johns Hopkins APL
Новый космический зонд Interstellar Probe, запуск которого намечен на 2030 год, за 15 лет должен будет покинуть границы гелиосферы и в течение 50 лет отдалиться на расстояние в тысячу астрономических единиц от Солнца, сообщил Европейский союз наук о Земле.
NASA планирует отправить Interstellar Probe на 1000 астрономических единиц от Солнца. Миссия будет запущена в начале 2030-х годов, ее план рассчитан на 50 и более лет. Для того чтобы достичь границ гелиосферы, аппарату потребуется около 15 лет. Для сравнения, у космических аппаратов «Вояджер» на это ушло около 35 лет.
«Вояджер-1» и «Вояджер-2» достигли границы гелиосферы и вошли в межзвездное пространство в 2012 и 2018 года соответственно. При этом они преодолели расстояние около 120 астрономических единиц от Солнца. На границе гелиосферы солнечный вечер встречается с потоками плазмы, газа и пыли из Местного межзвездного облака. Это крайне интересная для астрофизики и мало изученная область. Вояджеры смогли предоставить только ограниченные данные о ней. Interstellar Probe отправится в гораздо более дальнее путешествие. Над проектом работает команда из 500 ученых под руководством Лаборатории прикладной физики университета Джонса Хопкинса.
«Межзвездный зонд отправится в неизведанное местное межзвездное пространство, куда человечество никогда раньше не заглядывало, — говорит руководитель группы Елена Проворникова. — Мы впервые сможем сделать снимок гелиосферы снаружи».
Ученые рассчитывают понять, как солнечный ветер взаимодействует с межзвездным газом, создавая гелиосферу, а также как выглядит гелиосфера и что лежит за ее пределами. Зонд позволит наблюдать то, что невозможно увидеть с Земли, например внегалактическое фоновое излучение.
Понимание того, как Солнце взаимодействует с Галактикой, даст информацию о том, как другие звезды взаимодействуют со своими галактиками. Кроме того, гелиосфера защищает Солнечную систему от галактических космических лучей высокой энергии. Сейчас Солнце находится в Местном межзвездном облаке, однако движется к его краю, после пересечения которого оно войдет в неизвестную область межзвездного пространства, которая может повлиять на характеристики гелиосферы.
Источник
Что обнаружил зонд Parker Solar Probe, подлетевший максимально близко к Солнцу
С начала 2019 года зонд Parker Solar Probe, запущенный НАСА для исследования Солнца, трижды подходил к звезде ближе, чем любой другой космический корабль. Во время максимального сближения расстояние между аппаратом и Солнцем составляло всего 15 млн км — примерно половина расстояния между Солнцем и Меркурием, а температура окружающей среды — около 1 000 °C. Теперь космическое агентство опубликовало четыре научных статьи с первыми результатами семилетней миссии. За неполный год работы Parker удалось выяснить, что солнечный ветер формируется иначе, чем считали ученые, — а также открыть несколько новых явлений в короне Солнца, которые с Земли зафиксировать было невозможно. «Хайтек» рассказывает, что ученые узнали из первых данных зонда и какое влияние это окажет на науку.
Почему важно исследовать Солнце
Солнце — типичная звезда, каких много во Вселенной. Но, в отличие от других звезд, оно находится ближе всего к Земле — настолько близко, что наша планета в определенном смысле расположена внутри внешней части ее атмосферы.
Несмотря на значительное расстояние между нашей планетой и звездой, около 149 600 000 км, Землю постоянно омывает солнечный ветер — потоки ионизированного газа, которые формируются во внешней части солнечной атмосферы, так называемой короне.
От интенсивности солнечного ветра — космической погоды — зависят полярные сияния и стабильность магнитного поля Земли, возмущение которого может привести к возникновению помех в работе электронных приборов. Мощные вспышки в короне часто приводят к выходу из строя спутников и нарушению работы навигационных систем.
Солнечная активность влияет и на процесс эволюции разных форм жизни, а изучение звезды позволит понять механизм развития жизни на планетах в других системах. Если, конечно, жизнь существует где-то кроме Земли.
Несмотря на несколько столетий изучения, астрономам пока известно о Солнце относительно немного — например, ученые не знают, как именно ведет себя солнечный ветер в определенных ситуациях, какие процессы происходят в короне и что свидетельствует о начале ее активности. Изучение осложняется тем, что оно является крайне ярким объектом, температура на орбитах крайне высока, — поверхность разогрета более чем на 6 000 °C. Поэтому ни один исследовательский аппарат до сих пор не мог подойти к звезде достаточно близко, чтобы ее детально изучить.
Первым подобным аппаратом стал зонд Parker Solar Probe, оснащенный защитным керамическим экраном, способным выдержать температуру до 1 450 °C.
Процесс сближения Parker с Солнцем продлится в течение семи лет: за это время аппарат должен будет пройти 24 орбиты, постепенно приближаясь к центру нашей системы — в самой близкой точке он окажется на расстоянии всего около 6 млн км от звезды. Это самое маленькое расстояние, на которое когда-либо рукотворный аппарат подходил к Солнцу. Корабль также побьет рекорд самого быстро движущегося космического корабля относительно Солнца. Он достигнет скорости почти в 700 000 км/час к 2024 году, когда подойдет к звезде на расстояние 9-10 ее радиусов.
На борту находятся четыре научных эксперимента: Fields, который изучает электрические и магнитные поля; IS☉IS, измеряющий заряженные частицы высокой энергии в солнечном ветре и короне; WISPR — для исследования солнечного ветра и других структур; SWEAP, который измеряет состав различных типов частиц в солнечном ветре.
Что нового узнали ученые?
Сейчас Parker находится на расстоянии примерно в 24 млн км от Солнца — это ближе, чем среднее расстояние от звезды до Меркурия. Аппарат уже находится на меньшем расстоянии, чем рекордно близкая к звезде миссия «Гелиос-2», запущенная в 1976 году.
Зонд движется на максимальной скорости, которую когда-либо удавалось развить рукотворному аппарату — около 342,79 тыс. км/час. Аппарат уже отправил несколько пакетов данных на Землю — на их основе ученые из НАСА написали четыре научных статьи о поведении Солнца.
«Эта совершенно новая информация о том, как работает наша звезда, поможет нам понять, как Солнце меняет космическую среду во всей нашей Солнечной системе», — говорится в сообщении профессора Николя Фокса.
Формирование солнечного ветра
Parker уже дал ученым новые данные о движении солнечного ветра — оказалось, что он движется совершенно иначе, чем считалось. С помощью аппарата астрономы впервые увидели, как вблизи поверхности Солнца магнитное поле солнечного ветра меняется на 180°. Этот процесс за короткое время разгоняет потоки до гигантских скоростей — около 482,803 км/час.
Ученые полагают, что развороты магнитного поля, так называемые обратные переключения, играют решающую роль при нагреве солнечной короны. В их результате происходит короткая бомбардировка Земли очень быстрым потоком солнечного ветра — затем его скорость снижается до нормальных значений. Понимание этого процесса позволит уточнить прогнозы космической погоды — и обезопасить спутники и радиоприборы.
Пыль на ветру
Зонд также впервые обнаружил доказательство уменьшения частиц межпланетной пыли, которая заполняет Солнечную систему рядом со звездой. Этот эффект был предсказан теоретиками почти 100 лет назад, однако наблюдать его ученым до сих пор не удавалось.
Данные, собранные Parker, показали, что на расстоянии около 24 млн км от Солнца частицы космической пыли становятся меньше в размерах, а на расстоянии примерно в шесть радиусов звезды исчезают вовсе. Теория гласит, что частицы либо полность уничтожаются излучением, либо вылетают из этой области вместе с солнечным ветром.
При этом пока зона, полностью свободная от пыли, недоступна для непосредственных наблюдений зонда. Предполагается, что однозначно подтвердить ее существование удастся примерно через год — когда Parker подойдет еще ближе к звезде.
Солнечный ветер и вращение Солнца
С помощью инструмента SWEAP аппарат также подтвердил расчеты теоретиков о том, что вращение Солнца связано с солнечным ветром.
Большинство измерений солнечного ветра на сегодняшний день проводились на расстоянии в 90 млн км от Земли, где поток движется строго радиально. Поэтому понять, как именно солнечный ветер движется рядом с источником и на что влияет направление вращения, можно только непосредственно рядом с Солнцем.
Теперь Parker подтвердил, что рядом с источником солнечный ветер тесно связан с вращением звезды. При этом данные со SWEAP показали, что поток превращается в однородный ближе к Солнцу, чем предполагали теоретики.
Электрические частицы
Близкий подлет к звезде позволил зонду увидеть явления, которые слишком малы и кратковременны, чтобы их можно было наблюдать с Земли или с орбиты. Речь идет об энергетических вспышках в потоке солнечных частиц с необычно высоким уровнем тяжелых элементов.
«События, связанные с солнечными энергетическими частицами, важны — они могут возникать неожиданно и приводить к изменениям космической погоды. В частности, они могут причинить вред здоровью космонавтов. Поняв источники, ускорение и перенос солнечных энергетических частиц, мы сможем лучше защитить людей в космосе в будущем», — говорится в сообщении НАСА.
Что дальше?
Parker Solar Probe совершил полет по третьей научной орбите вокруг Солнца из 24 запланированных. Впереди у аппарата еще около 18 млн км — астрономы рассчитывают, что приближение к Солнцу позволит аппарату собрать достаточно данных, чтобы ответить на два главных вопроса.
Первый касается солнечного нейтрино — ученые пока не понимают, почему фактическое количество элементарных частиц, которые возникают в ядре Солнца в результате ядерных реакций, меньше предсказанного.
Второй вопрос связан с аномальной температурой солнечной короны — замеры показали, что она составляет более миллиона градусов Кельвина, тогда как поверхность звезды нагрета всего до 6 000 °C.
Источник
Зонд “Новые Горизонты” находится на расстоянии 100 а.е. от Солнца
Зонд New Horizons был запущен в 2006 году и долетел до Плутона в 2015 году. Осмотрев карликовую планету и её пять спутников, космическая станция направилась к поясу Койпера, где изучила маленькое ледяное тело. Эта фаза полета продолжалась до 2022 года, после чего “Новые Горизонты” начали движение к границе, известной как внешняя гелиосфера, где солнечный ветер встречается с местной межзвездной средой. К 2038 году зонд отлетает на 100 астрономических единиц (а.е.) от Солнца – что эквивалентно 100-кратному расстоянию между Землей и Солнцем – и продолжает двигаться в направлении созвездия Стрельца, которое включает в себя сверхмассивную чёрную дыру в центре нашей галактики.
Несмотря на то, что он был запущен со стартовой скоростью быстрее любого внешнего зонда до него, “Новые Горизонты” никогда не догонят ни “Вояджер-1” ни “Вояджер-2” – самые отдалённые объекты, созданные человеком. Близкие облёты Сатурна и Титана дали “Вояджеру-1” преимущество благодаря гравитационному манёвру. Когда New Horizons достигает 100 а.е., он движется со скоростью 13 км/с (46 800 км/ч), что примерно на 4 км/с (14400 км/ч) медленнее, чем “Вояджер-1” на этом расстоянии.
Ссылки на источники:
Все события 2038
Нет комментариев Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Источник
Объясняем, как именно солнечный зонд Паркер дотронется до Солнца и не расплавится
Остались считанные недели до запуска одного из самых амбициозных проектов НАСА. Солнечный зонд Паркер подлетит и ‘коснется’ Солнца, максимально приблизившись к солнечной поверхности и побив все рекорды предыдущих зондов.
По плану в трех ближайших подлетах Паркер приблизится к поверхности на расстояние 6.1 миллиона километров, оказавшись внутри внешней атмосферы — короны, температура которой достигает миллионов Кельвинов.
Конечно, зонд защищен от такого жара, и технология довольно интересна, но мы к этому еще вернемся. Для начала давайте подробнее рассмотрим саму эту безумную температуру.
Вы, возможно, думаете, что даже самая навороченная защита от жара буквально растает в таких условиях. Как никак, всего 733 Кельвина (460 C°) на Венере довольно быстро вывели из строя электронику на российских зондах 80-х годов.
Как объясняет НАСА, разгадка создания защиты Паркера лежала в разнице между температурой и жаром. Да и про плотность космоса не стоит забывать.
Температура описывает скорость движения частиц, а жар измеряет, как много энергии они при этом переносят. В космосе частицы могут двигаться очень быстро, но при этом переносить мизерные количества тепла, ведь расстояния между этими частицами оказываются немалые.
“Корона, через которую и пролетит солнечный зонд Паркер, к примеру, несмотря на очень высокую температуру, обладает низкой плотностью, — объясняет Сюзанна Дарлинг, представитель НАСА. — Подумайте о разнице между тем, чтобы засунуть руку в духовку или в кипящую воду (не проверяйте это дома!) — в духовке ваша рука выдержит значительно более высокую температуру в течение более долгого времени, чем в воде, где она будет контактировать со значительно большим количеством частиц.
“Так же, в сравнени с видимой поверхностью Солнца, его корона менее плотная, поэтому аппарат взаимодействует с меньшим количеством горячих частиц и получает меньше тепла.”
А это означает, что слой, который защищает большинство инструментов на борту зонда, накреется лишь до 1,644 Кельвина (1,370 C°).
Технология поистине фантастическая. Защита состоит из двух слоев перегретого углерод-углеродного копозиционного материала, между которыми лежит 11.5-сантиметровый слой углеродного пенопласта.
Сторона, которая будет обращена к Солнцу, покрыта блистательно белой керамической краской, которая должна отразить максимально возможное количество солнечного света. Ее диаметр — 2.4 метра. Благодаря легкости пены, весит весь щит всего 72,5 кг.
А самое удивительно, что все, что он заслоняет не нагревается выше отметки в 300 Кельвинов (30 C°).
Все инструменты, которые должны будут работать вне щита, защищены своими материалами. Цилиндр Фарадея , который будет ловить заряженные частицы, чтобы измерить скорость потока, сделан из сплава ( титан , цирконий и молибден ), температура плавления которого равняется 2,622 Кельвинам.
Микрочипы, которые дают электрическое поле для работы инструмента, сделаны из вольфрама — металла с самой высокой известной точкой плавления (3,695 Кальвинов). Электропроводка — из ниобиума , который плавится при 2,750 Кельвинах.
Сенсоры на аппарате позволяют корректировать его положение в пространстве, защищая хрупкие инструменты от нещадного воздействия солнечных лучей.
Что касается солнечных панелей, которые будут питать зонд энергией, они умеют складываться за щит. Это позволит избежать перегрева, когда Паркер подлетит достаточно близко к Солнцу.
Охлаждать зонд будет деионизированная вода под давлением. Такая жидкость лучше всего подходит для тех температурных переделов, которые предстоит пережить Паркеру.
Много гениальных инженерных решений потребовались для строительства этого зонда.
Сейчас мы стоит на пороге новых открытий о нашей домашней звезде, ее солнечном ветре и безумной внешней атмосфере. Остается надеяться, что зонд Паркер поможет разгадать открытое на днях уникальное строение короны Солнца — структурность, которую раньше не удавалось разглядеть.
Источник