Расстояние от земли до солнца называется годичный параллакс
Прямое определение расстояний до сравнительно близких небесных тел основано на явлении параллактического смещения. Суть его заключается в следующем. Близкий предмет при наблюдении его из разных точек проецируется на различные расположенные далеко предметы. Так, держа вертикально карандаш на фоне далекого многоквартирного дома, мы видим его левым и правым глазом на фоне разных окон. Для тел Солнечной системы такое смещение на фоне звезд заметно уже при наблюдении из точек, разнесенных на расстояние, сравнимое с радиусом Земли, а для близких звезд — при наблюдениях из точек, разнесенных на расстояние, сравнимое с радиусом орбиты Земли.
11.1. Горизонтальный экваториальный параллакс
Координаты небесных тел, определенные из разных точек земной поверхности, вообще говоря различны, и называются топоцентрическими координатами. Правда, это заметно лишь для тел Солнечной системы. Для устранения этой неопределенности все координаты тел Солнечной системы приводят к центру Земли и называют геоцентрическими. Угол между направлениями на какое-либо светило из данной точки земной поверхности и из центра Земли называется суточным параллаксом p‘ светила (рис. 22). Очевидно, что суточный параллакс равен нулю для светила, находящегося в зените, и максимален для светила на горизонте. Такой максимальный параллакс называется горизонтальным параллаксом светила p. Горизонтальный параллакс связан с суточным простым соотношением:
(37) |
Здесь синусы углов заменены самими углами ввиду их малости.
По сути дела, p — это угол, под которым виден радиус Земли с данного светила. Однако Земля не является идеальным шаром и сплюснута к полюсам. Поэтому на каждой широте радиус Земли свой и горизонтальные параллаксы одного и того же светила разные. Для устранения этих различий принято вычислять горизонтальный параллакс для экваториального радиуса Земли (R0 = 6378 км) и называть его горизонтальным экваториальным параллаксом p0.
Рис. 22. Суточный и горизонтальный параллакс |
Суточный параллакс необходимо учитывать при измерении высот и зенитных расстояний тел Солнечной системы и вносить поправку, приводя наблюдение к центру Земли:
(38) |
Измерив горизонтальный экваториальный параллакс светила p0, можно определить расстояние d до него, т.к.
Заменив синус малого угла p0 значением самого угла, выраженным в радианах, и имея в виду, что 1 радиан равен 206265″, получим искомую формулу:
(39) |
Замена синуса угла самим углом допустима, так как наибольший из известных горизонтальный экваториальный параллакс Луны равен 57′ (у Солнца p0=8″.79).
В настоящее время расстояния до тел Солнечной системы с гораздо большей точностью измеряются методом радиолокации.
11.2. Годичный параллакс
Угол, под которым с какой-либо звезды виден радиус земной орбиты a, при условии, что он перпендикулярен направлению на нее, называется годичным параллаксом звезды (рис. 23).
Рис. 23. Годичный параллакс |
По аналогии с горизонтальным экваториальным параллаксом, зная годичный параллакс, можно определять расстояния до звезд:
В километрах расстояния до звезд измерять неудобно, поэтому обычно пользуются внесистемной единицей — парсеком пк, определяемой как расстояние, с которого параллакс равен 1″. Само название составлено из первых слогов слов параллакс и секунда. Нетрудно убедиться, что 1 пк = 206 265 а.е. = 3.086 10 18 см. Реже используется такая единица измерения расстояний до звезд, как световой год, определяемый как расстояние, проходимое светом за год (1 пк = 3.26 светового года).
Расстояние до звезды в парсеках определяется через величину годичного параллакса особенно просто
(40) |
60. (477) Параллакс Солнца p0=8″.8, а видимый угловой радиус Солнца . Во сколько раз радиус Солнца больше радиуса Земли?
Решение: Так как параллакс Солнца есть ни что иное, как угловой радиус Земли, видимый с Солнца, следовательно, радиус Солнца во столько же раз больше радиуса Земли, во сколько его угловой диаметр больше параллакса .
61. (482) В момент кульминации наблюденное зенитное расстояние центра Луны (p0=57′) было 50 o 00′ 00″. Исправить это наблюдение за влияние рефракции и параллакса.
Решение: За счет рефракции наблюденное топоцентрическое зенитное расстояние меньше истинного топоцентрического, т.е. . Истинное топоцентрическое зенитное расстояние больше геоцентрического на величину суточного параллакса
.
62.(472) Чему равен горизонтальный параллакс Юпитера, когда он находится от Земли на расстоянии 6 а.е. Горизонтальный параллакс Солнца p0=8″.8.
63. (474) Наименьшее расстояние Венеры от Земли равно 40 млн. км. В этот момент ее угловой диаметр равен 32″.4. Определить линейный радиус этой планеты.
64. (475) Зная, что для Луны p0=57’02».7, а ее угловой радиус в это время rЛ=15’32».6, вычислить расстояние до Луны и ее линейный радиус, выраженные в радиусах Земли, а так же площадь поверхности и объем Луны по сравнению с таковыми для Земли.
65. (483) Наблюденное зенитное расстояние верхнего края Солнца составляет 64 o 55′ 33″, а его видимый радиус . Найти геоцентрическое зенитное расстояние центра Солнца, учтя рефракцию и параллакс.
66. Из наблюдений известны годичные параллаксы звезд Вега (
)
, Сириус (
)
, Денеб (
)
. Определить расстояние до этих звезд в пк и в а.е.
Источник
Расстояние от земли до солнца называется годичный параллакс
Общая астрономия. Годичный параллакс и расстояния до звезд