Меню

Расстояние от солнца до луны составляет

Сколько километров от Земли до Луны и до Солнца?

Среднее расстояние от Земли до Луны составляет около 384,3 тысяч километров. Среднее расстояние от Земли До Солнца равно 149,6 миллионам километров. Как Луна вокруг Земли, так и Земля вокруг Солнца движутся не по круглым, а по эллиптическим орбитам. Поэтому расстояния между планетами меняются в зависимости от времени суток или года.

Максимальное расстояние между Землёй и Луной называется апогей, минимальное — перигей. Луна имеет апогей в 405,7 тысяч километров и перигей равный 363,1 тысячам километров. Среднее расстояние (большая полуось орбиты) от Земли до Луны составляет около 384,3 тысяч километров.

Максимальное расстояние от Солнца до Земли называется афелий, минимальное — перигелий. Земля имеет афелий в 152 миллиона километров и перигелий равный 147 миллионам километров. Среднее расстояние (большая полуось орбиты) от Солнца до Земли составляет около 149,6 миллионов километров. Свет доходит от Солнца до Земли в среднем за 8 минут 20 секунд.

Оцените ответ:

Рекомендуем также почитать:

  • Почему звезды бывают видны лишь в темноте?
  • Почему зимой день короче, а летом — длиннее?
  • При какой температуре замерзают спирт, бензин, водка и прочие жидкости?
  • Какова формула сахара, соли, воды, спирта, уксуса и прочих веществ?
  • Когда будет ближайшее полнолуние в 2021 году?
  • Почему магнит притягивает железо?
  • Почему Солнце на закате красное?

И не забудьте подписаться на самый интересный паблик ВКонтакте!

Источник

Удаленность Луны от Солнца

Луна — естественный спутник Земли. Астрономы с древних времен пытались вычислить, какое расстояние от Луны до Солнца и до Земли.

От чего зависит движение Луны

Она движется вместе с Землей, из-за чего наблюдателям видна лишь с одной стороны. Полный оборот вокруг нашей планеты она совершает примерно за месяц. В процессе движения естественный спутник на время загораживает другие звезды и планеты, что свидетельствует о его непосредственной близости к Земле.

Выделяют цикличные фазы небесного тела, которые сменяют друг друга. Всего их 4:

  1. Новолуние.
  2. Первая четверть
  3. Полнолуние.
  4. Третья четверть.

Во время промежутков между основными фазами видимая часть спутника представляется в форме серпа. Различают также фазы растущей и убывающей Луны. Когда спутник находится над Атлантическим, Тихим или Индийским океаном, то притягивает к себе их воды, вызывая отлив. Когда Луна сдвигается, а влияние на воду ослабевает, происходит прилив.

Удаленность Луны от Земли

Расстояние от Луны до нашей планеты составляет около 384 400 км. Но это значение может увеличиваться или уменьшаться по мере движения спутника вокруг планеты.

Методы, применяемые для измерения расстояния до различных небесных тел, схожи с теми, которые используют землемеры, чтобы определить удаленность предмета, к которому невозможно подойти. Один из них заключается в том, что если в одно и то же время два наблюдателя будут фотографировать расположение космического тела из двух далеких друг от друга мест, а позже сравнят свои снимки, положение спутника Земли относительно звезд на небе будет отличаться. Исходя из полученных данных вычисляют расстояние до объекта.

Несмотря на его сравнительную близость к Земле, добраться до спутника будет тяжело. Долететь по прямой не получится: небесное тело будет постепенно сдвигаться по орбите в сторону, путь придется постоянно корректировать. При полете на второй космической скорости в 11 км/с (40 000 км/ч) полет теоретически займет около 10 часов, но может и больше. Оглядываясь на историю, можно увидеть, что полет команды Нила Армстронга на Луну длился около 80 часов.

Космический корабль должен набирать скорость в атмосфере, чтобы довести ее до предельного значения и вырваться из поля притяжения Земли. Затем кораблю придется тормозить при подлете к месту назначения. Ученые пока не придумали более быстрого способа перемещения в космосе.

Расстояние от Солнца до Луны

В среднем расстояние от Земли до Солнца равно 149,6 млн км. От Солнца до Луны оно примерно такое же. Но чтобы определить точное значение, надо учитывать, когда она ближе к звезде, а когда дальше от нее. Во всех фазах оно будет несколько отличаться.

Расстояние в космосе измеряется сотнями и тысячами световых лет. Современные технологии пока не позволяют человеку путешествовать в открытом космосе. Остается лишь исследовать его с поверхности планеты или использовать для этого управляемые космические аппараты. Методы измерения расстояний между небесными телами постоянно совершенствуются. Сегодня самой передовой является технология лазерной локации.

Источник

Расстояние от Солнца до Луны.

1 ответ

Расстояние между Землей и Солнцем колеблется от 147 до 152 млн. км

Оценка: 4.3 ( 9 голосов)

Знаете ответ?

Предметы

Новые вопросы

Рейтинг сайта

  1. 1. Александра Марс 701
  2. 2. Дарья Лысенко 161
  3. 3. Арина Ким 110
  4. 4. Alina 100
  5. 5. Игорь Проскуренко 90
  6. 6. Данила Лазарев 65
  7. 7. Данил Степанов 65
  8. 8. Polar Beer 64
  9. 9. Валерия Ким 60
  10. 10. Дебил Франкфуртский 52
  1. 1. Игорь Проскуренко 24,756
  2. 2. Кристина Волосочева 19,120
  3. 3. Ekaterina 18,721
  4. 4. Юлия Бронникова 18,580
  5. 5. Darth Vader 17,856
  6. 6. Алина Сайбель 16,787
  7. 7. Мария Николаевна 15,775
  8. 8. Лариса Самодурова 15,735
  9. 9. Liza 15,165
  10. 10. TorkMen 14,876

Самые активные участники недели:

  • 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
  • 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
  • 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.

Три счастливчика, которые прошли хотя бы 1 тест:

  • 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
  • 2. Николай З — подарочная карта книжного магазина на 500 рублей.
  • 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.

Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.

Источник

В чём измеряются далёкие расстояния в космосе?

Расстояния в космосе настолько огромны, что нам очень трудно понять: а насколько это далеко? Например, мы можем представить легко расстояния до соседних населённых пунктов, гораздо труднее нам вообразить расстояние до другой страны, а мысленно проложить путь на иной континент, пожалуй, под силу лишь путешественникам. А теперь попробуйте представить путь, к примеру, на край Солнечной системы! В километрах их уже не запишешь (ибо получаются слишком громоздкие цифры), и у астрономов есть для этого особые единицы измерения – астрономическая единица, парсек, световой год. В этой статье мне бы и хотелось рассказать о них!

Читайте также:  Источник энергии солнца значение

Километр

Если учёным необходимо описать расстояние между относительно близкими объектами, например, между соседними планетами и их спутниками, то удобнее это сделать в километрах. Например, расстояние от Солнца до Меркурия – 58 млн км, от Земли до Луны 380 000 км, ближайшее от Земли до Марса – 55, 76 млн км.

Астрономическая единица

В масштабах Солнечной системы ещё актуальны привычные нам километры и метры, но всё же они довольно неудобны. Чтобы не писать слишком длинные цифры, учёные часто используют астрономические единицы. Одна астрономическая единица (сокращённо а. е.) соответствует среднему расстоянию от Солнца до Земли – 150 миллионов км. Ну а если вам хочется узнать наиболее конкретное число, то астрономическая единица считается равной в точности 149 597 870 700 метрам. Например, если мы будем описывать расстояние от Земли до Сатурна в км, то кратчайший путь составит 1195 млн км, или 8 астрономических единиц. Среднее расстояние от Земли до Нептуна = 4, 35 млрд км, или 29 а. е. Как видим, проще записывать в а. е.

Чтобы хотя бы немного представить, насколько это далеко, то скажем, что одну а. е. пешеход со скоростью 5 км/ч преодолел бы за 3424 года! Если ехать на машине со скоростью в 100 км/ч, то на этот же путь у вас бы ушли долгих 170 лет.

Астрономическая единица в пределах «домашних» масштабов – величина, конечно же, большая. Но всё-таки за пределами Солнечной системы она будет всего лишь крохотным отрезком на очень длинной «линейке», поэтому переходим к следующей величине – световому году.

Световой год

Это наиболее распространённая единица измерения. Огромные расстояния в космосе измеряются световыми годами. Световой год – это путь, который свет преодолевает за год — 9 триллионов км, ну а кому хочется более громоздкое число, то вот, пожалуйста: 9 460 730 472 581 км.

Парсек

Это ещё одна единица измерения расстояний в космосе, которая довольно часто встречается в разных источниках. Парсек больше светового года примерно в 3 раза. 1 парсек = 3, 2616 светового года, или 1 парсек = 30, 9 трлн км! С их помощью определяют очень большие расстояния, в основном между звёздами, галактиками и их скоплениями, причём, не просто в парсеках, а даже в кило- и мегапарсеках.

Само слово «парсек» образовано от двух слов: «параллакс» и «секунда», поскольку его определяют, как расстояние до объекта, годичный параллакс которого будет равен одной угловой секунде.

Чтобы понять это определение, рассмотрим движение Земли вокруг Солнца. Каждые полгода наша планета оказывается на противоположных по отношению друг к другу точках орбиты. Если смотреть с Земли на достаточно близкую звезду, нам будет казаться, что она колеблется «туда-сюда» на фоне Вселенной.

Тот же эффект возникнет, если поднять вверх большой палец, вытянуть вперёд руку и поочерёдно закрывать один глаз. Попробуйте это сделать прямо сейчас 🙂 Что заметили? Создаётся ощущение, будто вы двигаете рукой – это и есть параллакс – мнимое смещение ближнего объекта относительно дальнего фона (пусть это даже будет стена).

Проследив, как меняются углы от наблюдателя до звезды или до какой-нибудь далёкой галактики, можно вычислить расстояние. Как это сделать? Представьте прямоугольный треугольник, основание которого – это расстояние от Земли до Солнца (напомним, что оно равняется одной а. е.). Катет треугольника – это расстояние до звезды, а угол определяет, насколько с нашей точки зрения будет меняться положение объекта на небе.

Небо делится на 360 градусов. В каждом градусе 60 угловых минут, а в каждой угловой минуте 60 угловых секунд. Получается, что небосвод поделён на 3600 угловых секунд. Так, параллакс ближайшей к нам звезды Проксима Центавра составляет примерно 0, 77 угловой секунды. Именно настолько она смещается за то время, пока наша планета совершает половину оборота вокруг Солнца. С помощью этих данных учёные вычислили, что от Проксимы Центавра нас отделяет расстояние в 1,3 парсека или 4 световых года.

Источник

Лунное расстояние (астрономия) — Lunar distance (astronomy)

Основная информация Система единиц астрономия Единица расстояние Символ LD или Δ ⊕ L <\ textstyle \ Delta _ <\ oplus L>> Конверсии 1 LD в . . равно . Базовая единица СИ 384 399 × 10 3 м Метрическая система 384 399 км Английские единицы 238 854 миль Астрономическая единица 0,002 569 а.е.

Мгновенное расстояние Земля-Луна или расстояние до Луны — это расстояние от центра Земли до центра Луны . Лунное расстояние ( LD или ), или характеристическое расстояние Земля-Луна , является единицей измерения в астрономии . С технической точки зрения, это большая полуось геоцентрической лунной орбиты . Расстояние до Луны составляет примерно 400 000 км , что составляет четверть миллиона миль или 1,28 световой секунды . Это примерно в тридцать раз больше диаметра Земли . Δ ⊕ L <\ textstyle \ Delta _ <\ oplus L>>

Большая полуось имеет значение 384399 км (238 854 миль). Среднее по времени расстояние между центрами Земли и Луны составляет 385 000,6 км (239 228,3 миль). Фактическое расстояние меняется в течение орбиты Луны от 356 500 км (221 500 миль) в перигее до 406 700 км (252 700 миль) в апогее , в результате чего дифференциальный диапазон составляет 50 200 км (31 200 миль).

Лунное расстояние обычно используется для выражения расстояния до сближающихся с Землей объектов . Большая полуось Луны — важная астрономическая система координат; точность измерения дальности в несколько миллиметров определяет большую полуось с точностью до нескольких дециметров; это имеет последствия для тестирования гравитационных теорий , таких как общей теории относительности , а также для уточнения других астрономических значений , таких как массы Земли , радиус Земли и вращения Земли. Измерение также полезно для определения радиуса Луны , массы Солнца и расстояния до Солнца .

Читайте также:  Как скроить юбку солнце без швов

Измерения расстояния до Луны с точностью до миллиметра производятся путем измерения времени, необходимого для прохождения света между станциями лунного лазерного определения дальности на Земле и ретрорефлекторами, установленными на Луне. Луна удаляется от Земли по спирали со средней скоростью 3,8 см (1,5 дюйма) в год, что было обнаружено в эксперименте по лазерной дальнометрии Луны .

СОДЕРЖАНИЕ

Значение

Лунное расстояние, выраженное в выбранных единицах

Ед. изм Среднее значение Неопределенность Ссылка
метр 3,843 99 × 10 8 1,1 мм
километр 384 399 1,1 мм
миля 238 854 0,043 дюйма
Радиус Земли 60,32
Австралия 1 / 388,6 знак равно 0,002 57
световая секунда 1,282 37,5 × 10 −12
  • AU — это 389 лунных расстояний.
  • Световой год составляет 24 611 700 лунных расстояний.
  • Радиус орбиты GEO (геостационарная земная орбита) составляет 42 164 км (26 199 миль) от центра Земли или 35 786 км (22 236 миль) от поверхности Земли. Первое средство 1 / 9,117 LD = 0,109 68 ЛД

Вариация

Мгновенное лунное расстояние постоянно меняется. На самом деле истинное расстояние между Луной и Землей может измениться так быстро, как 75 метров в секунду , или более 1000 км (620 миль) всего за 6 часов, из-за некруговой орбиты. Есть и другие эффекты, которые также влияют на расстояние до Луны. Некоторые факторы описаны в этом разделе.

Возмущения и эксцентриситет

Расстояние до Луны можно измерить с точностью до 2 мм за 1-часовой период отбора проб, что приводит к общей неопределенности в дециметр для большой полуоси. Однако из-за его эллиптической орбиты с переменным эксцентриситетом мгновенное расстояние изменяется с месячной периодичностью. Кроме того, на расстояние влияют гравитационные эффекты различных астрономических тел — в первую очередь Солнца и в меньшей степени Венеры и Юпитера. Другие силы, ответственные за мельчайшие возмущения: гравитационное притяжение к другим планетам Солнечной системы и астероидам; приливные силы; и релятивистские эффекты. Эффект радиационного давления от Солнца дает вклад в размере ± 3,6 мм до лунного расстояния.

Хотя мгновенная погрешность составляет несколько миллиметров, измеренное расстояние до Луны может отличаться от среднего значения более чем на 21 000 км (13 000 миль) в течение обычного месяца. Эти возмущения хорошо изучены, и расстояние до Луны можно точно смоделировать на протяжении тысяч лет.

Приливная диссипация

Благодаря действию приливных сил , то угловой момент вращения Земли медленно переносится на орбиту Луны. В результате скорость вращения Земли незаметно уменьшается (со скоростью 2,4 миллисекунды / столетие ), а лунная орбита постепенно расширяется. Текущая скорость рецессии составляет 3,830 ± 0,008 см в год . Однако считается, что в последнее время этот показатель увеличился, поскольку 3,8 см / год означало бы, что Луне всего 1,5 миллиарда лет, тогда как научный консенсус предполагает возраст около 4 миллиардов лет. Также считается, что эта аномально высокая скорость рецессии может продолжать ускоряться.

Предполагается, что расстояние до Луны будет продолжать увеличиваться до тех пор, пока (теоретически) Земля и Луна не станут приливно заблокированными , как Плутон и Харон. Это произойдет, когда продолжительность лунного орбитального периода будет равна периоду вращения Земли, который, по оценкам, составляет 47 сегодняшних дней. Тогда два тела будут в равновесии, и никакой другой энергии вращения больше не будет. Однако модели предсказывают, что для достижения этой конфигурации потребуется 50 миллиардов лет, что значительно больше, чем ожидаемый срок службы Солнечной системы .

Орбитальная история

Лазерные измерения показывают, что среднее расстояние до Луны увеличивается, что означает, что Луна была ближе в прошлом, а дни Земли были короче. Исследования окаменелостей раковин моллюсков кампанской эры (80 миллионов лет назад) показывают, что в это время было 372 дня (23 часа 33 минуты) в году, что означает, что расстояние до Луны составляло около 60,05 R (383 000 км или 238 000 км). миль). Существует геологические данные , что среднее расстояние лунного было около 52 R (332000 км или 205000 миль) в течение докембрийской эры ; 2500 миллионов лет назад .

Гипотеза гигантского удара , широко принятая теория, утверждает, что Луна была создана в результате катастрофического столкновения между Землей и другой планетой, что привело к повторному скоплению фрагментов на начальном расстоянии 3,8 R (24000 км или 15000 км). ми). В этой теории предполагается, что первоначальный удар произошел 4,5 миллиарда лет назад.

История измерений

До конца 1950-х годов все измерения расстояния до Луны основывались на оптических угловых измерениях : самое раннее точное измерение было выполнено Гиппархом во 2 веке до нашей эры. Космический век стал поворотным моментом, когда точность этого значения была значительно улучшена. В 1950-х и 1960-х годах проводились эксперименты с использованием радаров, лазеров и космических аппаратов с использованием компьютерной обработки и моделирования.

Этот раздел предназначен для иллюстрации некоторых исторически значимых или иных интересных методов определения расстояния до Луны и не является исчерпывающим или всеобъемлющим списком.

Параллакс

Самый старый метод определения лунного расстояния заключался в измерении угла между Луной и выбранной точкой отсчета одновременно из нескольких мест. Синхронизацию можно координировать, производя измерения в заранее определенное время или во время события, которое наблюдают все стороны. До появления точных механических хронометров событием синхронизации обычно было лунное затмение или момент, когда Луна пересекала меридиан (если наблюдатели имели одинаковую долготу). Этот метод измерения известен как лунный параллакс .

Для повышения точности необходимо выполнить определенные настройки, такие как регулировка измеренного угла с учетом преломления и искажения света, проходящего через атмосферу.

Лунное затмение

Ранние попытки измерить расстояние до Луны основывались на наблюдениях за лунным затмением в сочетании со знанием радиуса Земли и пониманием того, что Солнце намного дальше, чем Луна. Наблюдая за геометрией лунного затмения, можно рассчитать расстояние до Луны с помощью тригонометрии .

Читайте также:  Солнце весело засияло вырвавшись

Самые ранние сообщения о попытках измерить расстояние до Луны с помощью этого метода были сделаны греческим астрономом и математиком Аристархом Самосским в 4 веке до нашей эры, а затем Гиппархом , чьи вычисления дали результат 59–67 R ( 376 000 -427 000 км или 233 000 -265 000 миль ). Позднее этот метод нашел свое применение в работах Птолемея , который получил результат 64 + 1 ⁄ 6 R ( 409 000 км или 253 000 миль ) в его самой дальней точке.

Пересечение меридиана

Экспедиция французского астронома ACD Кроммелина наблюдала прохождение лунных меридианов в одну и ту же ночь из двух разных мест. Тщательные измерения с 1905 по 1910 год позволили измерить угол возвышения в тот момент, когда определенный лунный кратер ( Mösting A ) пересек местный меридиан, со станций в Гринвиче и на мысе Доброй Надежды , которые имеют почти одинаковую долготу. Расстояние рассчитывалось с погрешностью 30 км , и это оставалось окончательным значением лунного расстояния на следующие полвека.

Оккультации

Регистрируя момент, когда Луна закрывает фоновую звезду (или аналогично, измеряя угол между Луной и фоновой звездой в заданный момент), можно определить расстояние до Луны, если измерения производятся в нескольких местах известных разделение.

Астрономы О’Киф и Андерсон рассчитали расстояние до Луны, наблюдая четыре затмения в девяти местах в 1952 году. Они вычислили большую полуось 384 407 0,6 ± 4,7 км (238,859.8 ± 2,9 мили). Это значение было уточнено в 1962 году Ирен Фишер , которая включила обновленные геодезические данные для получения значения 384 403 0,7 ± 2 км (238,857.4 ± 1 мили).

Радар

В 1957 году в Лаборатории военно-морских исследований США был проведен эксперимент, в котором для определения расстояния Земля-Луна использовалось эхо сигналов радара. Длительные импульсы радара 2 мкс передавались с радиотарелки диаметром 50 футов (15 м). После того, как радиоволны отразились от поверхности Луны, был обнаружен обратный сигнал и измерено время задержки. По этому измерению можно было рассчитать расстояние. Однако на практике отношение сигнал / шум было настолько низким, что невозможно было надежно произвести точное измерение.

Эксперимент был повторен в 1958 году в Королевском радиолокационном учреждении в Англии. Длительные импульсы радара Было передано 5 мкс с пиковой мощностью 2 мегаватт с частотой следования 260 импульсов в секунду. После того, как радиоволны отразились от поверхности Луны, был обнаружен обратный сигнал и измерено время задержки. Несколько сигналов складывались вместе для получения надежного сигнала путем наложения осциллограмм на фотопленку. На основе измерений расстояние было рассчитано с погрешностью 1,25 км (0,777 мили).

Эти первоначальные эксперименты были задуманы как эксперименты, подтверждающие правильность концепции, и длились всего один день. Последующие эксперименты, продолжавшиеся один месяц, дали большую полуось 384 402 ± 1,2 км (238 856 ± 0,75 мили), что было самым точным измерением лунного расстояния в то время.

Лазерная дальность

Эксперимент , который измерил туда-обратно время полета лазерных импульсов , отраженных непосредственно от поверхности Луны была выполнена в 1962 году, команда из Массачусетского технологического института , и советской команды в Крымской астрофизической обсерватории .

Во время миссий Аполлона в 1969 году астронавты разместили на поверхности Луны световозвращатели с целью повышения точности и точности этой техники. Измерения продолжаются и включают несколько лазерных установок. Мгновенная точность экспериментов по определению расстояния до Луны позволяет достичь разрешения в несколько миллиметров и является наиболее надежным методом определения расстояния до Луны на сегодняшний день. Большая полуось определена равной 384 399,0 км.

Астрономы-любители и гражданские ученые

Благодаря современной доступности устройств точного времени, цифровых камер с высоким разрешением, приемников GPS , мощных компьютеров и почти мгновенной связи, астрономы-любители стали производить высокоточные измерения расстояния до Луны.

23 мая 2007 год цифровые фотографий Луны во время ближайшего затенения из Регул были взяты из двух мест, в Греции и Англии. Путем измерения параллакса между Луной и выбранной звездой фона было вычислено расстояние до Луны.

Более амбициозный проект под названием «Кампания Аристарха» был реализован во время лунного затмения 15 апреля 2014 года. Во время этого мероприятия участникам было предложено сделать серию из пяти цифровых фотографий от восхода луны до кульминации (точки наибольшей высоты).

В этом методе использовалось преимущество того факта, что Луна фактически находится ближе всего к наблюдателю, когда она находится в самой высокой точке неба, по сравнению с тем, когда она находится на горизонте. Хотя кажется, что Луна самая большая, когда она находится около горизонта, на самом деле все наоборот. Это явление известно как иллюзия Луны . Причина разницы в расстоянии заключается в том, что расстояние от центра Луны до центра Земли почти постоянно в течение ночи, но наблюдатель на поверхности Земли фактически находится на расстоянии 1 радиуса Земли от центра Земли. Это смещение приближает их к Луне, когда она находится над головой.

Современные камеры достигли уровня разрешения, позволяющего запечатлеть Луну с достаточной точностью для восприятия и, что более важно, для измерения этого крошечного изменения видимого размера. Результаты этого эксперимента рассчитывались как LD = 60,51 +3,91
−4,19 R . Принятое значение для этой ночи было 60,61 R , что подразумевает точность 3%. Преимущество этого метода заключается в том, что единственное необходимое измерительное оборудование — это современная цифровая камера (оснащенная точными часами и GPS-приемником).

Другие экспериментальные методы измерения расстояния до Луны, которые могут быть выполнены астрономами-любителями, включают:

  • Съемка Луны до того, как она войдет в полутень и после полного затмения.
  • Измерение с максимальной точностью времени контактов затмения.
  • Получение хороших снимков частичного затмения, когда форма и размер тени Земли хорошо видны.
  • Съемка Луны, включая в одном поле зрения Спику и Марс, с разных мест.

Источник

Adblock
detector