После открытия радиоизлучения Солнца в 1947 г. введён новый индекс солнечной активности – поток радиоизлучения F10.7 c длиной волны 10.7 см (2800 МГц). Он измеряется в солнечных единицах потока: 1 с.е.п. = 10 -22 Вт/(м 2 ·Гц).
Данный индекс характеризует изменения температуры и плотности на всём видимом диске Солнца. Его изменения хорошо коррелируют с изменениями чисел Вольфа и суммарной площади пятен и является удобной ежедневной характеристикой солнечной активности.
Ежедневные измерения интегрированного излучения от солнечного диска на частоте 2800 МГц (длине волны 10.7 см) выполняются по программе радиомониторинга Солнца, проводимой Национальным Исследовательским Советом Канады с 1947 г. До 31 мая 1991 года наблюдения проводились в радиообсерватории Алгонквин (Algonquin), недалеко от Оттавы. С 1 июня 1991 года наблюдения ведутся в Радиоастрофизической обсерватории Доминиона , расположенной недалеко от Пентиктона (Penticton), Британская Колумбия.
Результаты наблюдений в виде ежедневных, среднемесячных и среднегодовых значений потока радиоизлучения F10.7 публикуются на сайте Национальных центров экологической информации Национального Департамента по океану и атмосфере США (National Centers for Environmental Information, NOAA в разделе Solar Indices. Данные представлены в трех видах: obs – наблюденные значения, измеренные солнечным радиотелескопом; adj – скорректированные значения на изменение расстояния Земля — Солнце и приведенные к среднему расстоянию; abs – абсолютные значения – скорректированные значения, умноженные на 0.9.
Источник
Источники. 3.1.Радиоизлучение Солнца.Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м
Читайте также:
Бактерии рода Helicobacter и источники их выделения
В) Соматические источники сновидений.
Внутренние источники прироста собственного капитала банка
ВОПРОС№1:Предмет, значение и цели курса «Истории Белоруссии». Периодизация истории Белоруссии. Источники изучения курса.
Дополнительные источники
ДОПОЛНИТЕЛЬНЫЕ ИСТОЧНИКИ МОТИВАЦИИ. МОТИВАЦИОННЫЕ МЕРОПРИЯТИЯ
Задачи и источники анализа трудовых ресурсов.
И источники информации о личности правонарушителя
ИМУЩЕСТВО, ИСТОЧНИКИ ЕГО ФОРМИРОВАНИЯ
ИСТОЧНИКИ
3.1.Радиоизлучение Солнца.Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м. Особенно сильно излучение в метровом диапазоне; оно рождается в верхних слоях атмосферы Солнца, в его короне, где температура порядка 1 млн. К. Коротковолновое излучение Солнца относительно слабо; оно выходит из хромосферы, расположенной над видимой поверхностью Солнца – фотосферой.
3.2.Галактические радиоисточники.Уже первые наблюдения Г.Ребера показали, что радиоизлучение Млечного Пути неоднородно – оно сильнее в направлении центра Галактики. Дальнейшие исследования подтвердили, что основные источники радиоволн относительно компактны; их называют точечными или дискретными. Зарегистрированы уже десятки тысяч таких источников.
Излучение космических радиоисточников бывает двух типов: тепловое и нетепловое (обычно синхротронное). Тепловое излучение рождается в горячем газе от случайного (теплового) движения заряженных частиц – электронов и протонов. Его интенсивность в широком диапазоне спектра почти постоянна, но на длинных волнах она быстро уменьшается. Такое излучение характерно для эмиссионных туманностей. Остальные источники имеют нетепловое излучение, интенсивность которого растет с увеличением длины волны. В этих источниках излучение возникает при движении очень быстрых электронов в магнитном поле. Скорости электронов близки к скорости света, и это не может быть следствием простого теплового движения. Для разгона электронов до таких скоростей в лаборатории используют специальные ускорители – синхротроны. Как это происходит в естественных условиях, не совсем ясно. Синхротронное излучение сильно поляризовано. Это позволяет обнаруживать его в космических источниках и по направлению поляризации определять ориентацию их магнитного поля. Таким методом исследованы межзвездные магнитные поля в нашей и соседних галактиках.
Одним из важнейших достижений радиоастрономии стало открытие активных процессов в ядрах галактик. Радионаблюдения указывали на это еще в 1950-е годы, но окончательное подтверждение появилось в 1962, когда с помощью 5-метрового оптического телескопа обсерватории Маунт-Паломар (США) были независимо обнаружены бурные процессы в ядре галактики М 82.
Другим важнейшим открытием радиоастрономии считаются квазары – очень далекие и активные внегалактические объекты. Вначале они казались рядовыми точечными источниками. Затем некоторые из них были отождествлены со слабыми звездами (отсюда название «квазар» – квазизвездный радиоисточник). Доплеровское смещение линий в их оптических спектрах указывает на то, что квазары удаляются от нас со скоростью, близкой к скорости света и, в соответствии с законом Хаббла, расстояния до них составляют миллиарды световых лет. Находясь на таких гигантских расстояниях, они заметны лишь потому, что излучают с огромной мощностью – порядка 10 41 Вт. Это значительно больше мощности излучения целой галактики, хотя размер области генерации энергии у квазаров существенно меньше размера галактик и порой не превосходит размера Солнечной системы. Загадка квазаров до сих пор не раскрыта.
3.3.Отождествление источников.Звезды – слабые источники радиоволн. Долгое время единственной звездой на «радионебе» было Солнце, и то лишь благодаря его близости. Но в 1970-х годах Р.Хелминг и К. Уэйд из Национальной радиоастрономической обсерватории США открыли радиоизлучение от газовых оболочек, сброшенных Новой Дельфина 1967 и Новой Змеи 1970. Затем они обнаружили радиоизлучение красного сверхгиганта Антареса и рентгеновского источника в Скорпионе.
В.Бааде и Р.Минковский из обсерваторий Маунт-Вилсон и Маунт-Паломар (США) отождествили многие яркие радиоисточники с оптическими объектами. Например, ярчайший источник в Лебеде оказался связан с очень далекой и слабой галактикой необычной формы, ставшей прототипом радиогалактик. Мощный радиоисточник в Тельце они отождествили с остатком взрыва сверхновой звезды, отмеченной в китайской летописи 1054. Мощный источник в Кассиопее также оказался остатком сверхновой, вспыхнувшей всего лет 300 назад, но не замеченной никем.
В 1967 Э.Хьюиш, Дж.Белл и их коллеги из Кембриджа (Англия) открыли необычные переменные радиоисточники – пульсары. Излучение каждого пульсара представляет строго периодическую последовательность импульсов; у открытых пульсаров периоды лежат в интервале от 0,0016 с до 5,1 с. Через 2 года У.Кокки, М.Дисней и Д.Тейлор обнаружили, что радиопульсар в Крабовидной туманности совпадает со слабой оптической звездой, которая, как и пульсар, изменяет свою яркость с периодом 1/30 с. Среди более 700 известных сейчас пульсаров еще только один – в созвездии Парусов (Vela) – демонстрирует оптические вспышки. Выяснилось, что феномен пульсара связан c нейтронными звездами, образовавшимися в результате гравитационного коллапса ядер массивных звезд. Имея диаметр около 15 км и массу как у Солнца, нейтронная звезда быстро вращается и как маяк периодически «освещает» Землю. Постепенно скорость вращения пульсара замедляется, период между импульсами возрастает, а их мощность падает. Иногда наблюдаются резкие сбои периода, когда у нейтронной звезды происходит перестройка структуры, называемая «звездотрясением».
3.4.Фоновое излучение.Кроме отождествленных и неотождествленных дискретных источников, наблюдается суммарный фон от миллионов далеких галактик и облаков межзвездного газа нашей Галактики. С повышением чувствительности и разрешающей способности радиотелескопов из этого фона удается выделить все больше дискретных источников.
3.5.Радиоизлучение планет.В 1956 К.Мейер из Военно-морской лаборатории США открыл излучение Венеры на волне 3 см. В 1955 Б.Бурке и К.Франклин из института Карнеги в Вашингтоне обнаружили короткие всплески радиоизлучения от Юпитера на волне 13,5 м. Дальнейшие исследования в Австралии показали, что всплески излучения от Юпитера приходят в те моменты, когда определенные зоны его поверхности обращены к Земле. В дециметровом диапазоне кроме теплового излучения наблюдалось и синхротронное, что указывало на наличие у Юпитера мощного магнитного поля, которое позже было действительно обнаружено космическими зондами.
Радиолокационные исследования планет позволяют точно определять их расстояние от Земли, скорость их суточного вращения и свойства поверхности. Радиолокация Венеры позволила изучить топографию ее поверхности, закрытой от оптических телескопов плотным облачным слоем.
3.6.Излучение водорода.Нейтральный атомарный водород – возможно, самый распространенный элемент в межзвездном пространстве. Он способен излучать радиолинию с длиной волны 21 см, которая была предсказана в 1944 нидерландским теоретиком Х. ван де Хюлстом и обнаружена в 1951 Х.Юэном и Э.Парселом из Гарвардского университета (США). Существование узкой линии в радиодиапазоне оказалось очень полезным: измеряя ее доплеровское смещение, можно очень точно определять лучевую скорость наблюдаемого облака газа. При этом приемная аппаратура радиотелескопа сканирует некоторый диапазон длин волн в районе линии 21 см и отмечает пики излучения. Каждый такой пик – это линия излучения водорода, смещенная по частоте из-за движения одного из облаков, попавших в поле зрения антенны телескопа.
Около 5% водорода в Галактике вследствие высокой температуры находится в ионизованном состоянии. Когда свободные электроны пролетают вблизи положительно заряженных ядер водорода – протонов, они испытывают притяжение, движутся ускоренно и при этом излучают электромагнитные кванты. Иногда, потеряв энергию, электрон оказывается захваченным на один из верхних уровней атома (т.е. происходит рекомбинация). Спускаясь затем каскадно на устойчивый нижний уровень, электрон также излучает кванты энергии. Такое излучение свободных и рекомбинирующих электронов наблюдается в радиодиапазоне от эмиссионных туманностей и позволяет обнаруживать их даже в тех случаях, когда оптическое излучение не может достичь Земли из-за поглощения в межзвездной пыли. Благодаря этому радиоастрономы смогли обнаружить практически все эмиссионные туманности в Галактике.
Дата добавления: 2015-09-13 ; просмотров: 10 ; Нарушение авторских прав
Источник
Глава 3. Солнце
3.1. Радиоизлучение спокойного Солнца
Основной механизм радиоизлучения спокойного Солнца – тормозное излучение полностью ионизованного газа солнечной короны и хромосферы.
Излучение фотосферы в радиодиапазоне недоступно для наблюдений из-за сильного поглощения в хромосфере. Оптическая глубина хромосферы по тормозному поглощению равна 780 и 3 × 10 7 для излучения с длиной волны 1 см и 1.50 м соответственно. Лишь в субмиллиметровой области ( l
100 мкм) хромосфера становится прозрачной.
Граница между хромосферой и короной находится на расстоянии от центра Солнца, что соответствует высоте 28000 км над поверхностью фотосферы. В то же время оптическая глубина короны равна единице на волне 120 см. Таким образом, на метровых и более длинных волнах наблюдается только радиоизлучение короны, а на дециметровых и более коротких появляется вклад хромосферы. По этой причине угловой размер источника радиоизлучения, связанного с Солнцем, на метровых и дециметровых волнах значительно больше видимого диска.
Магнитное поле в короне не превышает одного Гаусса . Следовательно, электронная гирочастота значительно меньше частоты излучения в любом диапазоне наблюдаемого спектра, поэтому двулучепреломление и разница между обыкновенной и необыкновенной волнами не существенны.
Температура короны Ткор в среднем порядка нескольких миллиона градусов. В хромосфере наблюдается сильный градиент температуры: от 7000 K до 20000 K , в среднем — 10 4 K. Можно представить в простейшем варианте радиоизлучение короны двухслойной моделью, в соответствии с решением уравнения переноса (1.9). В этой модели яркостная температура в направлении центра видимого диска Солнца складывается из ослабленного короной излучения хромосферы с температурой Tхром (оно рассматривается как фоновое излучение) и из излучения короны с учетом самопоглощения:
(3.1)
Оптическая глубина короны t кор в направлении на центр солнечного диска определяется интегралом
(3.2)
Мера эмиссии солнечной короны в направлении на центр диска составляет около 3 × 10 26 см –5 . Распределение электронной концентрации по высоте в короне можно представить формулой
N ( r ) = 10 8 (1.5 r –6 + 3 r –16 ) см –3 , (3.3)
где r выражено в радиусах Солнца. Эта формула связывает шкалу высот в солнечной короне с нелинейной шкалой электронных концентраций. Для коротких волн
На волнах, где корона практически прозрачна ( t кор
На рис. 3.1 даны распределения яркостной температуры солнечной короны для разных длин волн. Очевиден эффект снижения яркостной температуры с ростом l .
Рефракция радиоволн в короне. Для каждой частоты существует критическое значение электронной концентрации Nкр, при котором коэффициент преломления корональной плазмы равен нулю. Значение Nкр соответствует некоторому уровню в короне , определяемому зависимостью (3.3). Этот уровень является как бы зеркалом для радиоволн, из-под него радиоизлучение выйти к наблюдателю не может. С другой стороны, в короне существует уровень, до которого на луче зрения наблюдателя оптическая глубина короны по тормозному поглощению (3.2) равна единице, согласно (3.3), ему соответствует некоторое значение электронной концентрации N t =1 . При преобладании тормозного механизма основная часть излучения поступает именно из области вблизи уровня с N = N t =1 . Важно, который из двух выделенных уровней – N t =1 или Nкр – расположен в короне выше. В таблице 2 приведены значения N (см –3 ), соответствующие Nкр и N t =1 . Таким образом, для излучения с длиной волны
соответствующие в солнечной короне
для разных длин волн
уровням w = w p и t = 1
короче 50 см уровень N t =1 расположен в короне выше, чем уровень Nкр, и все радиоизлучение короны определяется только свободно-свободными переходами. Однако на длине волны l > 50 см ситуация обратная, уровень Nкр («плазменное зеркало») расположен выше, чем уровень N t =1 . Это приводит к сдвигу вверх нижнего предела интегрирования в (3.2). Оптическая глубина обрезается, что приводит к уменьшению яркостной температуры. Еще одна причина снижения Tb – уровень Nкр отсекает от наблюдателя внутренние, более горячие слои короны, и наблюдаемое излучение идет из внешних слоев короны, где температура ниже.
Все сказанное относится к направлению на центр видимого диска Солнца. Для направлений вблизи лимба картина усложняется. Вследствие зависимости показателя преломления от высоты, траектории лучей, идущих в стороне от центрального направления, искривляются, как показано на рис. 3.2. Для наблюдателя происходит сдвиг излучающей области относительно ее истинного положения. Для излучения с длиной волн порядка нескольких метров величина сдвига составляет около 15‑20% от видимого размера солнечного диска. Вне центральной оси рефракция снова приводит к тому, что на метровых волнах мы видим большей частью внешние, более холодные слои короны, и эффективная яркостная температура короны снижается.
Рис. 3.2. Траектория луча в короне Солнца.
Для нецентрального направления интегрирование ведется вдоль луча (см. рис. 3.2):
, (3.4)
где элемент длины ds равен
.
Если показатель преломления не меняется вдоль луча, то оптическая глубина определяется только зависимостью коэффициента поглощения от расстояния до центра Солнца:
(3.5)
С учетом рефракции в короне ( n зависит от r ¢ ) необходимо отличать оптический путь от геометрического, и формула (3.5) изменится так:
(3.6)
Формула (3.6) автоматически учитывает отклонение луча от прямой линии, так как интегрирование ведется вдоль искривленной траектории.
В течение цикла солнечной активности наблюдается изменение полного потока радиоизлучения примерно в два раза. При этом можно выделить постоянную («спокойную») составляющую, обусловленную тепловым излучением короны и хромосферы. Переменная составляющая обязана своим происхождением уплотнениям над большими группами солнечных пятен – корональным конденсациям (рис. 3.3). Эти уплотнения удерживаются петлями сильного магнитного поля, удерживающего плазму.
Рис. 3.3. Карта Солнца на волне 21 см (слева)
и изофоты короны в линии Fe XIV l 5303 Å (справа).
Электронная плотность внутри конденсации превышает 10 9 см –3 , в то время как плотность окружающей плазмы
10 8 см –3 (рис. 3.4). Конденсация оптически толста по тормозному излучению на длинах волн l ³ 10 см и может наблюдаться как яркое пятно на фоне окружающего излучения невозмущенной короны. На более длинных волнах влияние конденсации слабее из-за увеличения поглощения верхними слоями короны с ростом l .
Пятна в радиодиапазоне, связанные с конденсациями, перемещаются по диску Солнца быстрее, чем оптические пятна, из-за большей высоты последних над поверхностью Солнца (20–100 тысяч километров). Время существования отдельных конденсаций достигает трех месяцев (то есть они могут наблюдаться в течение трех оборотов Солнца).
Рис. 3.4. Модель корональной
Угловые размеры конденсаций от одной до пяти угловых минут. Поляризации излучения не наблюдается, механизм излучения чисто тепловой, обусловленный свободно-свободными переходами, яркостная температура составляет около 1.5 × 10 5 K. Иногда отмечается переменность излучения с характерным временем несколько часов.
Малые конденсации (размером порядка угловой минуты) более яркие, яркостная температура достигает 10 7 K. У них часто бывает значительная круговая поляризация радиоизлучения, что говорит о сильном магнитном поле, до 300 Гс. Поляризация вызвана различием в коэффициентах поглощения для циркулярно поляризованных обыкновенной и необыкновенной волн (необыкновенная поглощается сильнее). Малые конденсации чаще всего наблюдаются над факельными полями активных областей, их существование и круговая поляризация обусловлены проникновением магнитного поля активной области высоко в корону.
3.3. Спорадическое радиоизлучение Солнца
Радиоизлучение активного Солнца, помимо излучения, связанного с корональными конденсациями, включает в себя несколько типов кратковременных всплесков длительностью от секунд до нескольких
Рис. 3.5. Схема возникновения солнечной вспышки вблизи нулевой линии магнитного поля.
часов. Всплески всех типов, так или иначе, связаны со вспышками в хромосфере. Вспышки происходят над активными областями Солнца, где петли сильного магнитного поля проникают высоко в атмосферу Солнца. Наиболее вероятно возникновение вспышек вблизи нулевой линии магнитного поля, где поля противоположных полярностей направлены встречно друг к другу (рис. 3.5). Такая конфигурация неустойчива, и может произойти перезамыкание магнитного поля. При этом происходит скачкообразное изменение напряженности магнитного поля, что создает, согласно уравнениям Максвелла (2.2), сильное электрическое поле Ввиду высокой проводимости полностью ионизованный плазмы в ней возникает сильный электрический ток. Диссипация джоулева тепла этого тока создает быстрый нагрев в относительно небольшой области. Происходит вспышка, наблюдаемая, прежде всего в оптическом диапазоне, в линии H a . Наиболее мощные вспышки с особо сильным нагревом наблюдаются и в белом свете (в континууме). При вспышках происходит ускорение заряженных частиц до релятивистских энергий, создаются ударные волны. Эти физические процессы находят отражения во всплесках солнечного радиоизлучения. Насчитывается несколько основных видов всплесков. Для наглядности всплески изображены в виде заштрихованных областей на одной диаграмме в координатах «время – длина волны» (рис. 3.6).
Микроволновые всплески. Наблюдаются на сантиметровых волнах ( l £ 10–20 см). Делятся на два подкласса: импульсные и всплески с постепенным нарастанием и спадом.
Импульсные всплески коррелируют со всплесками жесткого рентгеновского излучения (с энергией >80 кэВ). Механизм излучения – магнитотормозной в сильных магнитных полях в области вспышки.
Всплески с постепенным нарастанием и спадом совпадают с мягким рентгеновским излучением ( l
8–12 Å) вследствие разогрева плазмы в области вспышки до десятков миллионов градусов. Микроволновые всплески дают способ краткосрочного прогноза вспышки, так как подъем радиоизлучения на волнах l
3 см начинается за несколько минут до начала оптической вспышки.
Дециметровый континуум. Наблюдается одновременно с микроволновыми всплесками на частотах выше 250 МГц. Генерируется в источниках малых угловых размеров (2 ¢ –5 ¢ ), что близко к размерам источников микроволновых всплесков. Яркостная температура Tb
10 6 –10 9 K . Области генерации находятся вблизи вспышек, на высотах не более над фотосферой, то есть в самых нижних слоях короны. Дециметровый континуум создается, вероятнее всего, магнитотормозным излучением энергичных электронов, которые инжектируются из области вспышки в «ловушку», образованную магнитным полем биполярной группы пятен.
Всплески I типа (шумовые бури). Бури наблюдаются в основном на метровых волнах ( l
2–4 м), длятся несколько часов или суток. Состоят из нескольких тысяч отдельных всплесков I типа длительностью около одной секунды каждый и с полосой частот порядка нескольких Мегагерц. Если считать наблюдаемую ширину спектральной линии обязанной эффекту Доплера, то тепловое уширение соответствует кинетической температуре T kin
10 6 K, что типично для короны. Всплески I типа образуются в малых (
4 ¢ ) областях, связанных с магнитными полями пятен. Высота области генерации над фотосферой
400000 км. Яркостная температура излучения Tb
10 8 –10 10 K. Вблизи лимба излучение бывает сильно поляризовано по кругу. Механизм излучения связан с плазменными волнами, которые возбуждаются потоками быстрых электронов, ускоренных ударными волнами в магнитном поле. Излучение – магнитотормозное в магнитном поле пятна из области выше «плазменного зеркала». Есть предположение, что некоторые из всплесков могут генерироваться циклотронным мазерным механизмом.
Всплески III типа и типа U . Наблюдаются на дециметровых, метровых и более длинных волнах. Всплески по времени изолированные, на фиксированной частоте длительность несколько секунд. Потоки излучения составляют обычно 10 5 –10 6 Ян (в отдельных случаях до 10 8 Ян). Излучение узкополосное. Спектр всплеска обладает дрейфом по частоте со скоростью в среднем
10 МГц/с. Происходят во время взрывной фазы хромосферных вспышек (даже очень слабых), поэтому ежедневно регистрируется несколько таких всплесков. Часто наблюдается излучение на второй гармонике, но ее средняя частота не точно 2 n 1 , а
(1.85–2) n 1 . В редких случаях наблюдается и третья гармоника. Наличие гармоник указывает на нелинейность механизма, создающего колебания. Угловые размеры источников всплесков в среднем
3 ¢ . На длинных волнах иногда наблюдаются два сходных всплеска подряд: второй всплеск представляет собой радиоэхо от нижележащих слоев короны (от уровня «плазменного зеркала», где для данной частоты w
Механизм происхождения всплесков III типа впервые предложен в 1946 г. И.С. Шкловским. Излучение III типа возникает вследствие плазменных колебаний. В области хромосферной вспышки генерируется пучок релятивистских электронов ( v
1/3 c), который, проходя через корону, возбуждает на своем пути колебания плазмы на частоте Электронная концентрация N падает с высотой, w p также падает, поэтому спектр излучения дрейфует в сторону низких частот. Свидетельством в пользу существования пучка релятивистских электронов служит обнаружение на спутниках электронов с энергией
10 10 эВ на орбите Земли через
20 минут после вспышки.
Возбуждение колебаний в плазме аналогично черенковскому излучению. Часть энергии колебаний переходит в энергию радиоизлучения вблизи w p . Из-за столкновений излучение затухает довольно быстро, за характерное время
1/ n ст , где частота столкновений дается формулой (2.8): . В условиях солнечной короны ( T
10 8 см –3 ) n ст
15 с –1 , то есть колебания затухнут за 1/15 секунды. Реально прохождение пучка через данный элемент коронального вещества не происходит мгновенно, а длится
5–10 с. После прохождения пучка излучение быстро затухает, но к этому времени оно уже возбудится на более высоком уровне в короне, с другим значением N, на более низкой w p . Наблюдения всплесков III типа с высоким угловым разрешением (например, на системе апертурного синтеза VLA) показывают движение источников всплесков вверх в короне со скоростью
Затруднение данной модели: каким образом излучение на плазменной частоте w p выйдет из области генерации? Ответ состоит в том, что излучение всплеска не является монохроматическим. Образующаяся на w p спектральная линия испытывает доплеровское уширение из-за теплового движения электронов. При корональной температуре T
10 6 K средняя тепловая скорость электронов Поэтому ширина спектральной линии для частоты всплеска n
300 МГц составит около 10 МГц. Вторая гармоника будет шире, так как 1) ее частота вдвое выше, вдвое больше и доплеровское уширение; 2) у первой гармоники низкочастотная часть с n n p будет поглощена в непосредственной близости от места генерации, и наблюдателя достигнет только высокочастотная половинка. Эти соображения подтверждаются наблюдениями: действительно, вторая гармоника шире первой (иногда до 4 раз), и срез спектра у первой гармоники со стороны низких частот более крутой.
Иногда наблюдаются всплески с возвратом по частоте (U-тип), когда дрейф в сторону низких частот сменяется дрейфом в сторону более высоких частот. Это означает, что пучок релятивистских электронов попал в петлю коронального магнитного поля, которая завернула его обратно вниз. Частота поворота обычно около 100 МГц, что соответствует высоте в короне
200000 км. Другое объяснение: пучок электронов попал в локальное корональное уплотнение (корональную конденсацию), где плазменная частота w p выше.
Колебания на частоте w p возбуждаются в корональной плазме относительно легко. Поэтому во время максимума солнечной активности в течение 1 часа наблюдаются несколько всплесков III типа, как от сильных, так и от слабых вспышек (обычно на начальных стадиях вспышек).
Изложенная теория всплесков III типа качественно объясняет наблюдения. Однако до конца не ясны, по крайней мере, два вопроса: физический механизм нелинейности колебаний, приводящий к появлению второй гармоники, и количественное описание перехода плазменных волн в электромагнитное излучение. Коэффициент перехода энергии плазменных колебаний в энергию электромагнитных волн мал,
10 –5 , практически вся энергия идет на турбулизацию плазмы и, в конечном счете, на ее нагрев.
Всплески V типа. Наблюдаются на метровых волнах в
10% случаев после всплесков III типа. Возникают на метровых волнах в верхних слоях короны, где H
1 Гс. Длятся в среднем от 1 до 3 минут. Всплески V типа генерируются в результате рассеяния электронного пучка, создавшего перед этим всплеск III типа. В нижних слоях короны релятивистские электроны не излучают синхротронным механизмом, так как вылетают из области вспышки вдоль нулевой линии магнитного поля; в этой области большая часть их энергии идет на возбуждение плазменных колебаний. Потоки во всплесках V типа достигают 10 8 Ян. Но излучение V типа занимает гораздо более широкий диапазон частот, чем мгновенный узкополосный спектр III типа.
Всплески II типа. Появляются в результате особо сильных хромосферных вспышек (один раз в несколько суток). Также представляют собой узкополосное радиоизлучение. Всплески II типа сильнее, чем всплески III типа. Их средний поток
10 7 Ян, а максимальные значения даже до 10 11 Ян. Так же, как и всплески III типа, всплески II типа дрейфуют по частоте к низким частотам, но дрейф гораздо более медленный
200 кГц/с. Чаще всего наблюдаются на метровых волнах, изредка на дециметровых и сантиметровых. Есть вторая гармоника; обе гармоники бывают раздвоены по частоте. Полное время существования всплеска до 10–15 мин. Как правило, излучение всплесков II типа не поляризовано или поляризовано слабо.
Механизм возникновения всплесков II типа – также плазменные колебания. Частота излучения уменьшается с ростом высоты источника над поверхностью Солнца, но скорость перемещения гораздо ниже, чем для всплесков III типа, около 1000 км/с. Плазменные колебания возбуждаются ударной волной, которая распространяется от области хромосферной вспышки.
О возникновении ударной волны. Слабый звук, или акустическая волна в газе – линейный процесс: распространение волны в газе не меняет заметно параметры среды, в том числе температуру. Скорость звука
порядка тепловой скорости частиц. Показатель адиабаты k для одноатомного (и полностью ионизованного) газа равен 5/3.
На самом деле часть энергии звуковой волны при распространении диссипирует и разогревает газ.
Рис. 3.7. Схема превращения звуковой волны в ударную.
Поэтому гребень волны движется по уже подогретому газу, со скоростью, большей, чем скорость фронта. В итоге фронт становится очень крутым. Когда происходит «опрокидывание» фронта, волна превращается в скачок параметров газа (плотности, температуры и давления) и становится сверхзвуковой, или ударной (рис. 3.7). Сила ударной волны характеризуется числом Маха M – отношением скорости фронта волны к скорости звука в невозмущенном газе: M = фр/ зв. Волна уплотнения в газе может с самого начала распространения быть ударной, если газ был приведен в движение со сверхзвуковой скоростью. Такая ситуация как раз имеет место в хромосферной вспышке, когда из области вспышки происходит выброс плазменного сгустка с вмороженным магнитным полем. На фронте ударной волны возбуждаются плазменные колебания. Часть энергии колебаний переходит в энергию электромагнитных волн, которые наблюдаются в виде всплеска II типа. При подъеме ударной волны в более высокие слои короны Солнца, где меньше электронная концентрация и, соответственно, ниже плазменная частота, всплеск дрейфует к более низким частотам.
Расщепление гармоник всплеска II типа можно объяснить наличием магнитного поля H
2–6 Гс. Излучение происходит на частотах w = w p ± w H . Происходит как бы модуляция сигнала на плазменной частоте гирочастотой.
Излучение IV типа. Наблюдается после всплесков II типа, при более сильных хромосферных вспышках; в частности, свидетельствует о протонной вспышке (при которой происходит ускорение не только электронов, но и протонов). Наблюдается обычно на метровых волнах, но встречается и в более широком диапазоне частот (вплоть до сантиметровых волн). Генерируется синхротронным механизмом. Плазменный сгусток, выброшенный из области вспышки, несет вмороженное магнитное поле. Поле удерживает некоторое количество релятивистских электронов. Происходит также дополнительное ускорение электронов на фронте ударной волны. Электроны, которые вырываются вперед, создают всплески III типа. Энергия ускоренных электронов невелика, поэтому заметное синхротронное излучение имеет место лишь на длинных волнах, которые не могут выйти из короны ( w w p ). Лишь когда ударный фронт достигает более высоких уровней, синхротронное излучение становится наблюдаемым. Излучение IV типа сходно с излучением V типа, но у IV типа размер излучающей области и длительность излучения больше (до нескольких часов). Плотность потока достигает 10 6 –10 7 Ян. Излучение обычно поляризовано. Насчитывается несколько подклассов излучения IV типа (подробнее см. [19] ).