Меню

Прогулки по космосу нептун

Система планеты Нептун

Проплываем мимо великолепного сине-зеленого Урана и попадаем к масштабному голубому миру с практически такими же параметрами. Но сфера Нептуна отличается наличием густого белого облачного покрова и синих пятен. Вокруг восьмой и последней официальной планеты Солнечной системы сконцентрировано несколько крошечных колец и 14 спутников. Тритон настолько огромен, что привлекает к себе внимание исследователей. Давайте внимательно исследуем систему Нептун.

Кольца

Впервые кольца Нептуна заметили в 1968 году ученые во главе с Эдвардом Гийнаном. Полагали, что это неполные кольцевые сегменты. Подозревали, что могут иметь пробелы при эксперименте экклюзии в 1984 году. Когда Нептун прошел перед звездой, появились мигания. Но при повторном проходе ничего не заметили.

Проблему решили в 1989 году, когда к системе Нептуна приблизился корабль Вояджер-2. Кольца отличались комковатостью, что все еще остается загадкой. Возможно, есть сильное воздействие от спутников.

Кольцевая система тонкая и мрачная. Полагают, что это смесь льда и темного материала с органическими соединениями. Вояджер-2 отметил 5 колец. Есть мысль, что они молодые и сформировались после крушения небольшого спутника.

Динамическая атмосфера

Детали атмосферы Нептуна

Поражает облачный покров Нептуна. При сближении ожидали увидеть мягкую и безликую сферу. Но заметили гигантское синее пятно, напоминающее Большое Красное Пятно у Юпитера. Есть также скопления мелких синих пятен, которые выступают отверстиями в верхней атмосфере. Могут состоять из сероводорода.

Предполагали, что крупное пятно Нептуна будет вечным, как у Юпитера. Но при обзоре фото, сделанного телескопом Хаббл в 1994 году, оказалось, что его больше нет. Вояджер-2 получил снимки облаков. Они расположены высоко и отбрасывают тень. Думают, что состоят из метана. Отличаются динамичностью, поэтому могут сформироваться и рассеяться за несколько часов.

Исследование

Нептун и Тритон

Впервые за планетой и всей системой Нептуна наблюдал Галилео Галилей в 1612 году. Объект перемещался крайне медленно, поэтому напоминал звезду. В 1821 году Алексис Бувард отметил, что присутствует сила, влияющая на орбитальный путь Урана. Но именно Иоганну Галле удалось понять, что звезда – планета.

К системе Нептун приближался лишь один космический аппарат. 25 августа 1989 года Вояджер-2 выполнил ближайший подход, промчавшись на скорости 64000 км/ч. Солнечный свет был таким тусклым, что понадобились длинные экспозиции для фото. Информация поступала от корабля к земному пункту приема за 246 минут.

За время пребывания возле Нептуна Вояджер-2 подтвердил наличие магнитного поля и его смещение от планетарного центра. Также удалось получить снимки синих пятен и тонких белых облаков. Ветер оказался самым стремительным в системе, способным разогнаться до 2000 км/ч.

Пока повторных миссий к Нептуну не готовят. Но НАСА поднимали вопрос о долгосрочном проекте к планете и его спутникам. Если все решится, то на миссию уйдет 30 лет. На сайте можно узнать больше интересных фактов о планете Нептун, а также рассмотреть фото из космоса в высоком качестве.

Источник

Экскурсия на неспокойный Нептун

Нептун иногда называют «ледяным братом Урана» — это ещё один таинственный «шар» из замёрзшего газа – водорода (80 %) и гелия (19 %), примерно 1 % приходится на метан и прочие газы. Нептун с виду кажется немного поинтереснее, чем Уран – в его сине-голубой атмосфере можно увидеть и полоски белых облаков, и таинственные тёмные пятна, которые являются мощными ураганами, подобными такому, какой бушует на Юпитере вот уже не первую сотню лет – знаменитое Большое Красное пятно. Только вот, в отличие от леопарда, подобные пятна на Нептуне меняют своё местоположение, могут возникать, а могут и исчезать, да и вообще фраза «не суди по внешности» очень подходит последней планете Солнечной системы – он, как и Уран, кажется спокойным, но на самом деле это планета самых быстрых ветров – их скорость может достигать 2400 км/ч, так что пристегните ремни!

Вы приближаетесь к Нептуну и видите насыщенный его синий цвет, напоминающий весеннее небо – вы вспоминаете, как Солнце начинает пригревать землю, прогоняя надоевшую зиму. Белые облака, плывущие по голубому небу Нептуна – это тоже очень напоминает родной дом, но на самом деле между Землёй и Нептуном нет совершенно никакого сходства.

Солнце с окрестностей Нептуна кажется всего лишь мерцающим огоньком. Не погреться тут особо, ведь температура верхних слоёв составляет примерно минус 215 С. Будем надеяться, что прибывшие сюда на экскурсию взяли специальный костюм, позволяющий не промёрзнуть в таких условиях мгновенно (таких костюмов пока не изобрели – это элемент фантастики).

Тем, кому не нравится, что в сутках всего 24 часа, здесь не особо будет удобно строить свой рабочий график: день на Нептуне проходит всего за 16 часов, однако вам понадобится толстый календарь, так как год на Нептуне длится 90 000 дней (почти 165 земных лет). Планета вращается очень быстро, но за короткие сутки переживать не стоит, ведь какое это имеет значение, если Солнце кажется здесь всего лишь далёкой тусклой звездой?

Так бы выглядел рассвет на Тритоне, спутнике Нептуна

Лазурный цвет последней планеты до сих пор остаётся загадкой для учёных, ведь состав Урана и Нептуна схожий, но почему-то вот Нептун имеет более насыщенный синий оттенок. Возможно, это связано с тем, что, как полагают учёные, на Нептуне есть большое количество воды, только вода эта глубоко спрятана. Может быть, поэтому планета и имеет такой цвет? Но данная версия похожа на ту самую надежду, которая теплится в сердцах людей: никому не хочется быть одинокими во Вселенной, а там, где есть вода, там, мы знаем, должна быть и жизнь. Сторонники этой версии надеются, что на Нептуне может прятаться океан.

А более правдоподобная версия, объясняющая такой насыщенный цвет планеты, гласит: всё дело в наличии метана среди окружающих его ядро газов. Это вещество активно поглощает свет в диапазоне 640 нм, т.е. на красной длине волны. Остальные цвета видимого спектра отражаются от атмосферы. Этот факт и определяет окрас, который человеческий глаз воспринимает на фотографиях, сделанных из космоса. Однако на Уране концентрация метана примерно такая же, вот только Уран имеет более приглушенный, голубовато-зелёный оттенок. Есть мнение, что в атмосфере Нептуна содержится пока еще не установленный компонент, поглощающий солнечный свет в желто-красном спектре. Такой эффект могут давать различные соединения углерода.

Может ли Нептун быть других цветов? Да, может! Правда, не весь, а отдельные его области: итак, вы выходите на орбиту Нептуна и видите на его поверхности огромные эллиптические и, чуть поменьше, круглые пятна чернильного цвета, – это гигантские ураганы, похожие на неистовые смерчи на Земле, только мощнее в тысячи раз! В отличие от Большого Красного пятна Юпитера, эти пятна могут появляться и исчезать. Воронка уходит вглубь планеты, в неё-то мы и заглянем, ведь это огромное «окно», ведущее к более тёмным облакам внизу.

Погрузившись в атмосферу Нептуна, вы окажетесь в самых быстрых воздушных потоках Солнечной системы, ведь их средняя скорость около 600 м/с (это в два раза больше звуковой!). Но почему именно здесь так неспокойно? Ветры на этой планете – одна из его главных загадок. До сих пор нет точного ответа на этот вопрос, но самое логичное объяснение учёных выглядит так: в направлении ветров ярко выражена зависимость от направления вращения планеты. На высоких широтах эти направления совпадают, а на низких широтах противоположны друг другу. При этом скорость ветров достигает на экваторе 400 м/с, а на полюсах она значительно ниже — до 250 м/с. Следует также учитывать особенности атмосферы планеты — в области полюсов содержание этана, ацетилена и метана в десятки, и даже в сотни раз выше, чем у экватора. Когда южный полюс направлен ближе к Солнцу, эти замороженные газы начинают испаряться и просачиваться вверх, тем самым, вызывая эти мощные ветровые потоки.

Поскольку на Нептуне нет твёрдой поверхности, ветер, не встречая преграды, мчится без остановки. Когда произойдёт смена времен года, северный полюс будет наклонен ближе к Солнцу, а южный, наоборот, уйдет в тень, и потоки газов пойдут уже с севера. Да… Каждый сезон на Нептуне длится 40 лет!

Приближение к Нептуну

Ещё одно объяснение этим неспокойным вихрям – ядро планеты до сих пор не остыло со дней своего формирования. Именно его тепло может порождать конвективные потоки. Учёные до сих пор в замешательстве, ведь как в таком холодном ледяном мире газы могут двигаться с такой скоростью? Возможно, ядро ещё подогревают приливные силы гравитационного взаимодействия Нептуна с его крупнейшим спутником Тритоном. Подлетая всё ближе к Нептуну, вы задумываетесь: «Интересно, а штиль здесь вообще когда-нибудь бывает?!»

Читайте также:  Как наука связана с космосом

Облака Нептуна — верхние слои в представлении художника

Вы замечаете также, что величественный и неспокойный Нептун окружил себя кольцами. Правда, они состоят в основном из пыли и не идут ни в какое сравнение с настоящим «Властелином колец» — Сатурном. Помимо пыли это ещё и мелкие каменистые частички. И пусть даже они не самые красивые в Солнечной системе, но они всё же стоят пары туристических снимков! Засмотревшись на эти призрачные дуги, вы задумываетесь о том, что неплохо было бы взять себе на память частичку кольца.

Кольца Нептуна невозможно рассмотреть в любительский телескоп из-за того, что они тёмные. Учёные считают, что в их состав входят органические компоненты, которые были изменены под действием космических лучей. Считается, что эта кольцевая система намного моложе самой Солнечной системы и всех её планет, но сколько им лет – точно сказать невозможно.

Итак, мы отвлеклись, а ведь нас ждёт прыжок внутрь Нептуна! Встретит нас этот газовый гигант совершенно негостеприимно – нехваткой кислорода, адским холодом, высокой радиацией и чудовищным давлением. Если бы вы прыгнули, то спускались бы на Нептун чуть быстрее, чем на Земле, так как гравитация Нептуна всего на 14 % выше земной.

Жуткий холод только в верхних слоях атмосферы, но по мере погружения вниз давление будет возрастать. Сначала вы пройдёте сквозь высокие голубовато-перистые облака. Спустившись ниже, рекомендуем не нюхать отвратительный запах аммиака и сероводорода. Никакой свет уже не будет проникать внутрь, и вы окажетесь в окружении кромешной темноты и сильных ветров, движущихся со сверхзвуковыми скоростями.

Гипотетический корабль, рискнувший «нырнуть» в Нептун

Спустившись ещё ниже (в среднем, километров на 200) вы увидите огромные вспышки молнии. Давление возрастает, и газы начинают сжиматься в плотные структуры, некое подобие облаков. Эти бело-синие облака настолько плотные, что молнии здесь будут чудовищной силы, а раскаты грома могут запросто оглушить путешественника-экстремала. Если в вас не попала молния, вы, радуясь, что удача была на вашей стороне, спускаетесь ниже.

Газ в более нижних слоях сжимается до жидкого состояния, поэтому очень трудно найти границу этого перехода стояния вещества из газообразного в жидкое. Это не океан, а странная атмосферная смесь. Плотность этих текучих сред будет постоянно повышаться с повышением давления. В этой области уже станет теплее – температура поднимется до 26 С. Чем ниже вы будете опускаться, тем выше будет температура. В районе ядра температура составит порядка 4000 градусов по Цельсию. Этот перегретый слой будет состоять из воды, метана и аммиака, и ведёт себя эта смесь как горячая плотная жидкость. Из-за сверхвысокого давления атомы углерода могут начать кристаллизироваться и образовывать собой алмазы. При спуске к ядру алмазы будут мерцать вокруг вас, словно сверкающий град, а потом они будут медленно тонуть в сверхплотной и сверхгорячей газовой смеси.

Если вы сможете выдержать эти высокие температуры (5000 С) и давление (выше 7 миллионов атмосфер), то вы увидите ядро Нептуна. Оно примерно такой же массы, как и Земля, и состоит из железа, каменистой породы и экзотических льдов. Может быть, там будет даже слой спрессованных алмазов. Кто желает, может попробовать их оттуда вытащить, а кто не рискнёт, может вернуться наверх!

Как бы выглядело ядро.

Единственный аппарат, который пролетел мимо Нептуна – «Вояджер-2» в 1989 году, поэтому Уран и Нептун – самые малоисследованные миры. Прекрасные фотографии останутся надолго у нас в памяти, поскольку никто пока не планирует никаких миссий к Нептуну.

Источник

Журнал «Все о Космосе»

Нептун

Нептун с «Вояджера-2».

Обнаруженный 23 сентября 1846 года, Нептун стал первой планетой, открытой благодаря математическим расчётам, а не путём регулярных наблюдений. Обнаружение непредвиденных изменений в орбите Урана породило гипотезу о неизвестной планете, гравитационным возмущающим влиянием которой они и обусловлены. Нептун был найден в пределах предсказанного положения. Вскоре был открыт и его спутник Тритон, однако остальные 13 спутников, известные ныне, были неизвестны до XX века. Нептун был посещён лишь одним космическим аппаратом, «Вояджером-2», который пролетел вблизи от планеты 25 августа 1989 года.

Нептун по составу близок к Урану, и обе планеты отличаются по составу от более крупных планет-гигантов — Юпитера и Сатурна. Иногда Уран и Нептун помещают в отдельную категорию «ледяных гигантов». Атмосфера Нептуна, подобно атмосфере Юпитера и Сатурна, состоит в основном из водорода и гелия, наряду со следами углеводородов и, возможно, азота, однако содержит более высокую долю льдов: водного, аммиачного, метанового. Ядро Нептуна, как и Урана, состоит главным образом из льдов и горных пород. Следы метана во внешних слоях атмосферы, в частности, являются причиной синего цвета планеты.

В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, по некоторым оценкам, их скорости могут достигать 2100 км/ч. Во время пролёта «Вояджера-2» в 1989 году в южном полушарии Нептуна было обнаружено так называемое Большое тёмное пятно, аналогичное Большому красному пятну на Юпитере. Температура Нептуна в верхних слоях атмосферы близка к −220 °C. В центре Нептуна температура составляет по различным оценкам от 5400 K до 7000—7100 °C, что сопоставимо с температурой на поверхности Солнца и сравнимо с внутренней температурой большинства известных планет. У Нептуна есть слабая и фрагментированная кольцевая система, возможно, обнаруженная ещё в 1960-е годы, но достоверно подтверждённая «Вояджером-2» лишь в 1989 году.

В 1948 году в честь открытия планеты Нептун было предложено назвать новый химический элемент под номером 93 нептунием.

12 июля 2011 года исполнился ровно один Нептунианский год — или 164,79 земного года — с момента открытия Нептуна 23 сентября 1846 года.

История открытия

Согласно зарисовкам, Галилео Галилей наблюдал Нептун 28 декабря 1612 года, а затем 29 января 1613 года. Однако в обоих случаях Галилей принял планету за неподвижную звезду в соединении с Юпитером на ночном небе. Поэтому Галилей не считается первооткрывателем Нептуна.

Во время первого периода наблюдений в декабре 1612 года Нептун был в точке стояния, как раз в день наблюдений он перешёл к попятному движению. Видимое попятное движение наблюдается, когда Земля обгоняет по своей орбите внешнюю планету. Поскольку Нептун был вблизи точки стояния, движение планеты было слишком слабым, чтобы быть замеченным с помощью маленького телескопа Галилея.

В 1821 году Алексис Бувар опубликовал астрономические таблицы орбиты Урана. Более поздние наблюдения показали существенные отклонения реального движения Урана от таблиц. В частности, английский астроном Т.Хасси на основе собственных наблюдений обнаружил аномалии в орбите Урана и предположил, что они могут быть вызваны наличием внешней планеты. В 1834 Хасси посетил Бувара в Париже и обсудил с ним вопрос об этих аномалиях. Бувар согласился с гипотезой Хасси и обещал провести расчеты, необходимые для поиска гипотетической планеты, если найдет время для этого, но в дальнейшем не занимался этой проблемой. В 1843 Джон Куч Адамс вычислил орбиту гипотетической восьмой планеты для объяснения изменения в орбите Урана. Он послал свои вычисления сэру Джорджу Эйри, королевскому астроному, а тот в ответном письме попросил разъяснений. Адамс начал набрасывать ответ, но почему-то так и не отправил его и в дальнейшем не настаивал на серьёзной работе по данному вопросу.

Урбен Леверье независимо от Адамса в 1845—1846 годы провёл свои собственные расчёты, но астрономы Парижской обсерватории не разделяли его энтузиазма и проводить поиски предполагаемой планеты не стали. В июне, ознакомившись с первой опубликованной Леверье оценкой долготы планеты и убедившись в её схожести с оценкой Адамса, Эйри убедил директора Кембриджской обсерватории Д. Чэллиса начать поиски планеты, которые безуспешно продолжались в течение августа и сентября. Чэллис дважды наблюдал Нептун, но, вследствие того, что он отложил обработку результатов наблюдений на более поздний срок, ему не удалось своевременно идентифицировать искомую планету.

Тем временем Леверье удалось убедить астронома Берлинской обсерватории Иоганна Готтфрида Галле заняться поисками планеты. Генрих д’Арре, студент обсерватории, предложил Галле сравнить недавно нарисованную карту неба в районе предсказанного Леверье местоположения с видом неба на текущий момент, чтобы заметить передвижение планеты относительно неподвижных звёзд. Планета была обнаружена в первую же ночь примерно после одного часа поисков. Вместе с директором обсерватории Иоганном Энке в течение двух ночей они продолжили наблюдение участка неба, где находилась планета, в результате чего им удалось обнаружить её передвижение относительно звёзд и убедиться, что это действительно новая планета. Нептун был обнаружен 23 сентября 1846 года, в пределах 1° от координат, предсказанных Леверье, и примерно в 12° от координат, предсказанных Адамсом.

Читайте также:  Тайна космоса земной лик луны

Вслед за открытием последовал спор между англичанами и французами за право считать открытие Нептуна своим. В конечном счёте, консенсус был найден и было принято решение считать Адамса и Леверье сооткрывателями. В 1998 году были вновь найдены так называемые «бумаги Нептуна» (имеющие историческое значение бумаги из Гринвичской обсерватории), которые были незаконно присвоены астрономом Олином Дж. Эггеном, хранились у него в течение почти трёх десятилетий и были найдены в его владении только после его смерти. После пересмотра документов некоторые историки теперь полагают, что Адамс не заслуживает равных с Леверье прав на открытие Нептуна (что, впрочем, подвергалось сомнениям и ранее: например Деннисом Роулинсом ещё с 1966 года). В 1992 году в статье в журнале «Dio» он назвал требования британцев признать равноправие Адамса на открытие воровством. «Адамс проделал некоторые вычисления, но он был немного не уверен в том, где находится Нептун» — сказал Николас Коллеструм из Университетского колледжа Лондона в 2003 году.

Название

Некоторое время после открытия Нептун обозначался просто как «внешняя от Урана планета» или как «планета Леверье». Первым, кто выдвинул идею об официальном наименовании, был Галле, предложивший название «Янус». В Англии Чайлз предложил другое название: «Океан».

Утверждая, что имеет право дать наименование открытой им планете, Леверье предложил назвать её Нептуном, ложно утверждая, что такое название одобрено французским бюро долгот. В октябре он пытался назвать планету по своему имени — «Леверье» — и был поддержан директором обсерватории Франсуа Араго, однако эта инициатива натолкнулась на существенное сопротивление за пределами Франции. Французские альманахи очень быстро вернули название Гершель для Урана, в честь её первооткрывателя Уильяма Гершеля, и Леверье для новой планеты.

Директор Пулковской обсерватории Василий Струве отдал предпочтение названию «Нептун». О причинах своего выбора он сообщил на съезде Императорской Академии наук в Петербурге 29 декабря 1846 года. Это название получило поддержку за пределами России и вскоре стало общепринятым международным наименованием планеты.

В римской мифологии Нептун — бог моря и соответствует греческому Посейдону.

Статус

С момента открытия и до 1930 года Нептун оставался самой далёкой от Солнца известной планетой. После открытия Плутона Нептун стал предпоследней планетой, за исключением 1979—1999 годов, когда Плутон находился внутри орбиты Нептуна. Однако исследование пояса Койпера в 1992 году привело к обсуждению вопроса о том, считать ли Плутон планетой или частью пояса Койпера. В 2006 году Международный астрономический союз принял новое определение термина «планета» и классифицировал Плутон как карликовую планету, и, таким образом, вновь сделал Нептун последней планетой Солнечной системы.

Эволюция представлений о Нептуне

Ещё в конце 1960-х годов представления о Нептуне несколько отличались от сегодняшних. Хотя были относительно точно известны сидерический и синодический периоды обращения вокруг Солнца, среднее расстояние от Солнца, наклон экватора к плоскости орбиты, существовали и параметры, измеренные менее точно. В частности, масса оценивалась в 17,26 земных вместо 17,15; экваториальный радиус в 3,89 вместо 3,88 от земных. Звёздный период обращения вокруг оси оценивался в 15 часов 8 минут вместо 15 часов и 58 минут, что является наиболее существенным расхождением текущих знаний о планете со знаниями того времени.

В некоторых моментах разночтения были и позже. Первоначально, до полёта АМС “Вояджер-2”, предполагалось, что магнитное поле Нептуна имеет такую же конфигурацию, как поле Земли или Сатурна. По последним представлениям, поле Нептуна имеет вид т. н. «наклонного ротатора». Географические и магнитные «полюса» Нептуна (если представить его поле дипольным эквивалентом) оказались под углом друг к другу более 45°. Таким образом, при вращении планеты её магнитное поле описывает конус.

Физические характеристики

Сопоставление размеров Земли и Нептуна

Орбита и вращение

За один полный оборот Нептуна вокруг Солнца наша планета совершает 164,79 оборота.

Сидерический период вращения для Нептуна равен 16,11 часа. Вследствие осевого наклона, сходного с Земным (23°), изменения в сидерическом периоде вращения в течение его длинного года не являются значимыми. Поскольку Нептун не имеет твёрдой поверхности, его атмосфера подвержена дифференциальному вращению. Широкая экваториальная зона вращается с периодом приблизительно 18 часов, что медленнее, чем 16,1-часовое вращение магнитного поля планеты. В противоположность экватору, полярные области вращаются за 12 часов. Среди всех планет Солнечной системы такой вид вращения наиболее ярко выражен именно у Нептуна. Это приводит к сильному широтному сдвигу ветров.

Орбитальные резонансы

Диаграмма показывает орбитальные резонансы, вызванные Нептуном в поясе Койпера: 2:3 резонанс (Плутино), «классический пояс», с орбитами, на которые Нептун существенного влияния не оказывает, и 1:2 резонанс (Тутино)

Орбиты объектов, которые могут удерживаться в этом поясе в течение достаточно долгого времени, определяются т. н. вековыми резонансами с Нептуном. Для некоторых орбит это время сравнимо с временем всего существования Солнечной системы. Эти резонансы появляются, когда период обращения объекта вокруг Солнца соотносится с периодом обращения Нептуна как небольшие натуральные числа, например, 1:2 или 3:4. Таким образом объекты взаимостабилизируют свои орбиты. Если, к примеру, объект будет совершать оборот вокруг Солнца в два раза медленнее Нептуна, то он пройдёт ровно половину пути, тогда как Нептун вернётся в своё начальное положение.

Наиболее плотно населённая часть пояса Койпера, включающая в себя более 200 известных объектов, находится в резонансе 2:3 с Нептуном. Эти объекты совершают один оборот каждые 1½ оборота Нептуна и известны как «плутино», потому что среди них находится один из крупнейших объектов пояса Койпера — Плутон. Хотя орбиты Нептуна и Плутона подходят очень близко друг к другу, резонанс 2:3 не позволит им столкнуться. В других, менее «населённых», областях существуют резонансы 3:4, 3:5, 4:7 и 2:5.

В своих точках Лагранжа (L4 и L5) — зонах гравитационной стабильности — Нептун удерживает множество астероидов-троянцев, как бы таща их за собой по орбите. Троянцы Нептуна находятся с ним в резонансе 1:1. Троянцы очень устойчивы на своих орбитах, и поэтому гипотеза их захвата гравитационным полем Нептуна сомнительна. Скорее всего, они сформировались вместе с ним.

Внутреннее строение

Внутреннее строение Нептуна напоминает внутреннее строение Урана. Атмосфера составляет примерно 10—20 % от общей массы планеты, и расстояние от поверхности до конца атмосферы составляет 10—20 % расстояния от поверхности до ядра. Вблизи ядра давление может достигать 10 ГПа. Объёмные концентрации метана, аммиака и воды найдены в нижних слоях атмосферы.

Внутреннее строение Нептуна: 1. Верхняя атмосфера, верхние облака 2. Атмосфера, состоящая из водорода, гелия и метана 3. Мантия, состоящая из воды, аммиака и метанового льда 4. Каменно-ледяное ядро

Магнитосфера

И своей магнитосферой, и магнитным полем, сильно наклонённым на 47° относительно оси вращения планеты и распространяющегося на 0,55 от её радиуса (приблизительно 13 500 км), Нептун напоминает Уран. До прибытия к Нептуну «Вояджера-2» учёные полагали, что наклонённая магнитосфера Урана была результатом его «бокового вращения». Однако теперь, после сравнения магнитных полей этих двух планет, учёные полагают, что такая странная ориентация магнитосферы в пространстве может быть вызвана приливами во внутренних областях. Такое поле может появиться благодаря конвективным перемещениям жидкости в тонкой сферической прослойке электропроводных жидкостей этих двух планет (предполагаемая комбинация из аммиака, метана и воды), что приводит в действие гидромагнитное динамо. Магнитное поле на экваториальной поверхности Нептуна оценивается в 1,42 μT в течение магнитного момента 2,16·1017 Tm³. Магнитное поле Нептуна имеет сложную геометрию с относительно большими небиполярными компонентами, включая сильный квадрупольный момент, который по мощности может превышать дипольный. В противоположность этому — у Земли, Юпитера и Сатурна относительно небольшой квадрупольный момент, и их поля менее отклонены от полярной оси. Головная ударная волна Нептуна, где магнитосфера начинает замедлять солнечный ветер, проходит на расстоянии в 34,9 планетарных радиусов. Магнитопауза, где давление магнитосферы уравновешивает солнечный ветер, находится на расстоянии в 23—26,5 радиусов Нептуна. Хвост магнитосферы тянется до расстояния в 72 радиуса Нептуна, а возможно и гораздо дальше.

Читайте также:  Вид черной дыры с космоса

Атмосфера и климат

Атмосфера

В верхних слоях атмосферы обнаружен водород и гелий, которые составляют соответственно 80 и 19 % на данной высоте. Также наблюдаются следы метана. Заметные полосы поглощения метана встречаются на длинах волн выше 600 нм в красной и инфракрасной части спектра. Как и в случае с Ураном, поглощение красного света метаном является важнейшим фактором, придающим атмосфере Нептуна синий оттенок, хотя яркая лазурь Нептуна отличается от более умеренного аквамаринового цвета Урана. Так как содержание метана в атмосфере Нептуна не сильно отличается от такового в атмосфере Урана, предполагается, что существует также некий, пока неизвестный, компонент атмосферы, способствующий образованию синего цвета. Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура снижается вместе с высотой, и стратосфера, где температура с высотой, наоборот, увеличивается. Граница между ними, тропопауза, находится на уровне давления в 0,1 бар. Стратосфера сменяется термосферой на уровне давления ниже, чем 10−4 — 10−5 микробар. Термосфера постепенно переходит в экзосферу. Модели тропосферы Нептуна позволяют полагать, что в зависимости от высоты, она состоит из облаков переменных составов. Облака верхнего уровня находятся в зоне давления ниже одного бара, где температура способствует конденсации метана.

На фото, сделанном «Вояджером-2», виден вертикальный рельеф облаков

Климат

Одно из различий между Нептуном и Ураном — уровень метеорологической активности. «Вояджер-2», пролетавший вблизи Урана в 1986 году, зафиксировал крайне слабую активность атмосферы. В противоположность Урану, на Нептуне были отмечены заметные перемены погоды во время съёмки с «Вояджера-2» в 1989 году.

Большое тёмное пятно (вверху), Скутер (белое треугольное облачко посередине) и Малое тёмное пятно (внизу)

Штормы

Большое тёмное пятно, фото с «Вояджера-2»

Внутреннее тепло

Более разнообразная погода на Нептуне, по сравнению с Ураном, как полагают, — следствие более высокой внутренней температуры. При этом Нептун в полтора раза удалённее от Солнца, чем Уран, и получает лишь 40 % от того количества солнечного света, которое получает Уран. Поверхностные же температуры этих двух планет примерно равны. Верхние области тропосферы Нептуна достигают весьма низкой температуры в −221,4 °C. На глубине, где давление равняется 1 бару, температура достигает −201,15 °C. Глубже идут газы, однако температура устойчиво повышается. Как и с Ураном, механизм нагрева неизвестен, но несоответствие большое: Уран излучает в 1,1 раза больше энергии, чем получает от Солнца. Нептун же излучает в 2,61 раза больше, чем получает, его внутренний источник тепла добавляет 161 % к энергии, получаемой от Солнца. Хотя Нептун — самая далёкая от Солнца планета, его внутренней энергии оказывается достаточно, чтобы породить самые быстрые ветры в Солнечной системе. Предлагается несколько возможных объяснений, включая радиогенный нагрев ядром планеты (подобно разогреву Земли радиоактивным калием-40), диссоциация метана в другие цепные углеводороды в условиях атмосферы Нептуна, а также конвекция в нижней части атмосферы, которая приводит к торможению гравитационных волн над тропопаузой.

Образование и миграция

Модель внешних планет и пояса Койпера: а) До того как Юпитер и Сатурн вступили в резонанс 2:1; б) Рассеяние объектов пояса Койпера в Солнечной системе после изменения орбиты Нептуна; c) После выбрасывания тел пояса Койпера Юпитером.

Одна из них считает, что оба ледяных гиганта не сформировались методом аккреции, а появились из-за нестабильностей внутри изначального протопланетного диска, и позднее их атмосферы были «сдуты» излучением массивной звезды класса O или B.

Другая концепция заключается в том, что Уран и Нептун сформировались ближе к Солнцу, где плотность материи была выше, и впоследствии переместились на нынешние орбиты. Гипотеза перемещения Нептуна пользуется популярностью, потому что позволяет объяснить текущие резонансы в поясе Койпера, в особенности, резонанс 2:5. Когда Нептун двигался наружу, он сталкивался с объектами прото-пояса Койпера, создавая новые резонансы и хаотично меняя существующие орбиты. Считается, что объекты рассеянного диска оказались в своём нынешнем положении из-за взаимодействия с резонансами, созданными миграцией Нептуна.

Предложенная в 2004 году компьютерная модель Алессандро Морбиделли из обсерватории Лазурного берега в Ницце предположила, что перемещение Нептуна к поясу Койпера могло быть вызвано возникновением резонанса 1:2 орбит Юпитера и Сатурна, который послужил своего рода гравитационным рычагом, заставившим Уран и Нептун изменить своё местоположение и вытолкнувшим их на более высокие орбиты. Выталкивание объектов из пояса Койпера в результате этой миграции может также объяснить «Позднюю тяжёлую бомбардировку», произошедшую через 600 миллионов лет после формирования Солнечной системы, и появление у Юпитера троянских астероидов.

Спутники и кольца

Нептун (вверху) и Тритон (ниже)

Второй (по времени открытия) известный спутник Нептуна — Нереида, спутник неправильной формы с одним из самых высоких эксцентриситетов орбиты среди прочих спутников Солнечной системы. Эксцентриситет в 0,7512 даёт ей апоапсиду, в 7 раз большую её периапсиды.

Спутник Нептуна Протей

Четыре самые внутренние спутника Нептуна — Наяда, Таласса, Деспина и Галатея. Их орбиты так близки к Нептуну, что находятся в пределах его колец. Следующая за ними, Ларисса, была первоначально открыта в 1981 году при покрытии звезды. Сначала покрытие было приписано дугам колец, но когда «Вояджер-2» посетил Нептун в 1989 году, выяснилось, что покрытие было произведено спутником. Между 2002 и 2003 годом было открыто ещё 5 спутников Нептуна неправильной формы, что было анонсировано в 2004 году. 16 июля 2013 с помощью телескопа «Хаббл» был открыт 14-й спутник Нептуна около 20 км в диаметре. Поскольку Нептун был римским богом морей, его спутники называют в честь меньших морских божеств.

Кольца

Кольца Нептуна, снятые «Вояджером-2»

Наблюдения

Нептун не виден невооружённым глазом, так как его звёздная величина находится между +7,7 и +8,0. Таким образом, Галилеевы спутники Юпитера, карликовая планета Церера и астероиды 4 Веста, 2 Паллада, 7 Ирида, 3 Юнона и 6 Геба ярче его на небе. Для уверенного наблюдения планеты необходим телескоп c увеличением от 200× и выше и диаметром не менее 200—250 мм. В этом случае можно увидеть Нептун как небольшой голубоватый диск, похожий на Уран. В бинокль 7×50 его можно заметить как слабую звезду.

Из-за значительности расстояния между Нептуном и Землёй угловой диаметр планеты меняется лишь в пределах 2,2—2,4 угловых секунд. Это наименьшее значение среди остальных планет Солнечной системы, поэтому визуальное наблюдение деталей поверхности данной планеты затруднено. Поэтому точность большинства телескопических данных о Нептуне была невысокой до появления космического телескопа «Хаббл» и крупных наземных телескопов с адаптивной оптикой. В 1977 году, к примеру, не был достоверно известен даже период вращения Нептуна.

Для земного наблюдателя каждые 367 дней Нептун вступает в кажущееся ретроградное движение, таким образом, образуя своеобразные воображаемые петли на фоне звёзд во время каждого противостояния. В апреле и июле 2010 года и в октябре и ноябре 2011 года эти орбитальные петли привели его близко к тем координатам, где он был открыт в 1846 году.

Наблюдения за Нептуном в диапазоне радиоволн показывают, что планета является источником непрерывного излучения и нерегулярных вспышек. И то и другое объясняют вращающимся магнитным полем планеты. В инфракрасной части спектра на более холодном фоне чётко видны волнения в глубине атмосферы Нептуна(т. н. «штормы»), порождённые теплом от сжимающегося ядра. Наблюдения позволяют с высокой долей достоверности установить их форму и размер, а также отслеживать их передвижения.

Исследования

Изображение Тритона с «Вояджера-2»

Во время сближения сигналы с аппарата шли до Земли 246 минут. Поэтому, по большей части, миссия «Вояджера-2» опиралась на предварительно загруженные команды для сближения с Нептуном и Тритоном, а не на команды с Земли. «Вояджер-2» совершил достаточно близкий проход вблизи от Нереиды, прежде чем прошёл всего в 4400 км от атмосферы Нептуна 25 августа. Позднее в тот же день «Вояджер» пролетел вблизи Тритона.

«Вояджер-2» подтвердил существование магнитного поля планеты и установил, что оно наклонено, как и поле Урана. Вопрос о периоде вращения планеты был решён измерением радиоизлучения. «Вояджер-2» также показал необычно активную погодную систему Нептуна. Было открыто 6 новых спутников планеты и колец, которых, как оказалось, было несколько.

Около 2016 года НАСА планировала послать к Нептуну КА «Нептун Орбитер». В настоящее время никаких предположительных дат старта не называется, и стратегический план исследования Солнечной системы больше не включает этот аппарат.

Источник

Adblock
detector