Какая сила тяжести на других планетах?
Общеизвестно, что Земля имеет форму шара, сплюснутого у полюсов. Поэтому вес одного и того же тела (определяемый силой притяжения) в различных местах планеты неодинаков. Например, взрослый человек, переместившись из высоких широт к экватору, «потеряет в весе» около 0,5 кг. А какова сила тяжести на других планетах Солнечной системы?
Теория сэра Ньютона
Один из отцов-основателей классической механики, великий английский математик, физик и астроном Исаак Ньютон, изучая движение Луны вокруг нашей планеты, в 1666 году сформулировал Закон всемирного тяготения. По мнению ученого, именно сила тяготения лежит в основе движения всех тел в космосе и на Земле, будь то планеты, вращающиеся вокруг звезд, или яблоко, падающее с веток. Согласно Закону, сила притяжения двух материальных тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между телами.
Если вести речь о силе тяжести на Земле и других планетах или астрономических объектах, то из вышесказанного становится ясно, что она пропорциональна массе объекта и обратно пропорциональна квадрату его радиуса. Прежде чем отправиться в космическое путешествие, рассмотрим гравитационные силы на нашей планете.
Вес и масса
Несколько слов о физических терминах. Теория классической механики утверждает, что гравитация возникает вследствие взаимодействия тела с космическим объектом. Силу, с которой это тело действует на опору или подвес, называют весом тела. Единица измерения этой величины — ньютон (Н). Вес в физике обозначают, как и силу, буквой F и вычисляют по формуле F=mg, где коэффициент g — ускорение свободного падения ( у поверхности нашей планеты g=9,81 м/с 2 ).
Под массой понимают фундаментальный физический параметр, определяющий количество материи, заключенной в теле, и его инертные свойства. Традиционно измеряется в килограммах. Масса тела постоянна в любом уголке нашей планеты и даже Солнечной системы.
Если бы Земля имела строгую шарообразную форму, вес определенного предмета на различных географических широтах земной поверхности на уровне моря был бы неизменным. Но наша планета имеет форму эллипсоида вращения, причем полярный радиус на 22 км короче экваториального. Поэтому, согласно Закону всемирного тяготения, вес тела на полюсе будет на 1/190 больше, чем на экваторе.
На Луне и Солнце
Исходя из формулы, силу тяжести на других планетах и астрономических телах можно легко вычислить, зная их массу и радиус. Кстати, в основе способов и методов определения этих величин лежит все тот же Закон всемирного тяготения Ньютона и 3-й закон Кеплера.
Масса ближайшего к нам космического тела — Луны — в 81 раз, а радиус — в 3,7 раза меньше соответствующих земных параметров. Таким образом, вес любого тела на единственном естественном спутнике нашей планеты будет в шесть раз меньше, чем на Земле, при этом ускорение свободного падения будет иметь значение 1,6 м/с 2 .
На поверхности нашего светила (в районе экватора) этот параметр имеет значение 274 м/с 2 — максимальное в Солнечной системе. Здесь сила тяжести в 28 раз превосходит земную. Например, человек массой 80 кг имеет вес на Земле около 800 Н, на Луне — 130 Н, а на Солнце — более 22 000 Н.
Сила тяжести на других планетах
В 2006 году астрономы мира условились считать, что в состав Солнечной системы входит восемь планет (Плутон причислили к карликовым планетам). Условно их принято разделять на две категории:
- Земная группа ( от Меркурия до Марса).
- Гиганты (от Юпитера до Нептуна).
В центре Солнечной системы
Космические объекты, принадлежащие к первой группе, расположены внутри орбиты пояса астероидов. Для этих планет характерно следующее строение:
- Центральная область — горячее и тяжелое ядро, состоящее из железа и никеля.
- Мантия, большую часть которой составляют ультраосновные магматические породы.
- Кора, состоящая из силикатов (исключение — Меркурий). В связи с разряженностью атмосферы, его верхний слой сильно разрушен метеоритами).
Некоторые астрономические параметры и сила тяжести на других планетах кратко отражены в таблице.
Радиус орбиты (млн км) | Радиус (тыс. км) | Масса (кг) | Ускорение своб. падения g (м/с 2 ) | Вес космонавта (Н) | |
Меркурий | 57,9 | 2,4 | 3,3×10 23 | 3,7 | 260 |
Венера | 108,2 | 6,1 | 4,9×10 24 | 8,8 | 622 |
Земля | 149,6 | 6.4 | 6×10 24 | 9,81 | 686 |
Марс | 227,9 | 3,4 | 6.4×10 23 | 3,86 | 270 |
Оперируя данными таблицы, можно определить, что сила тяжести на поверхности Меркурия и Марса в 2,6 раза меньше, чем на Земле, а на Венере вес космонавта будет меньше земного лишь на 1/10 часть.
Гиганты и карлики
Планеты-гиганты, или внешние планеты, располагаются за орбитой Главного пояса астероидов. В основе каждого из этих тел каменное ядро небольших размеров, покрытое громадной газообразной массой, состоящей преимущественно из аммиака, метана и водорода. Гиганты имеют малые периоды обращения вокруг своей оси (от 9 до 17 часов), и при определении гравитационных параметров необходимо учитывать действие центробежных сил.
Вес тела на Юпитере и Нептуне будет больше, чем на Земле, а вот на других планетах сила тяжести немного меньше земной. Эти объекты не имеют твердой или жидкой поверхности, поэтому расчеты ведутся для границы верхнего облачного слоя (см. таблицу).
Радиус орбиты (млн км) | Радиус (тыс. км) | Масса (кг) | Ускорение своб. падения g (м/с 2 ) | Вес космонавта (Н) | |
Юпитер | 778 | 71 | 1,9×10 27 | 23,95 | 1677 |
Сатурн | 1429 | 60 | 5,7×10 26 | 10,44 | 730 |
Уран | 2871 | 26 | 8,7×10 25 | 8,86 | 620 |
Нептун | 4504 | 25 | 1,0×10 26 | 11,09 | 776 |
(Примечание: данные по Сатурну во многих источниках (цифровых и печатных) весьма противоречивы).
В заключение несколько любопытных фактов, дающих наглядное представление о том, какая сила тяжести на других планетах. Единственное небесное тело, на котором побывали представители человечества, — Луна. По воспоминаниям американского астронавта Нила Армстронга, тяжелый защитный скафандр не мешал ему самому и его коллегам с легкостью совершать прыжки на высоту до двух метров — с поверхности до третьей ступеньки лестницы лунного модуля. На нашей планете такое же усилие привело лишь к прыжку на 30-35 см.
Вокруг Солнца обращается еще несколько карликовых планет. Масса одной из самых больших — Цереры — в 7,5 тыс. раз меньше, а радиус — в два десятка раз меньше земного. Сила тяжести на ней настолько слаба, что космонавт смог бы легко переместить груз массой около 2 тонн, а оттолкнувшись от поверхности «карлика», просто улетел бы в космическое пространство.
Источник
Солнце, планеты и гравитация – описание, фото и видео
Гравитация — самая таинственная сила во Вселенной. Ученые до сих пор не знают ее природы. Но именно гравитация удерживает на орбитах планеты Солнечной системы. Не будь силы тяготения, планеты разлетелись бы от Солнца, как бильярдные шары от удара кием.
Гравитация – сила тяготения
Если же смотреть глубже, то станет ясно, что не было бы гравитации, не было бы и самих планет. Сила тяготения — притяжение материи к материи — это та сила, которая собрала вещество в планеты и придала им круглую форму.
Гравитация
Силы тяготения Солнца вполне хватает на то, что бы удерживать девять планет, десятки их спутников и тысячи астероидов и комет. Вся эта компания роем вращается вокруг Солнца, как мотыльки вокруг освещенного балкона. Если бы не было силы тяготения, эти планеты, спутники и кометы полетели бы каждый своим путем по прямой линии. Вместо этого они вращаются вокруг Солнца по своим орбитам, потому что Солнце силой своего притяжения постоянно искривляет их прямолинейную траекторию, притягивая к себе планеты, луны и кометы с астероидами.
Гравитация и расстояние между объектами
Планеты кружатся вокруг светила, подобно тому, как пони, катающие детей, ходят по кругу, привязанные к столбу в центре этого круга. Разница только в способе привязки. Космические тела привязаны к Солнцу невидимыми нитями гравитации. Правда, чем больше расстояние между объектами, тем меньше сила притяжения между ними. Солнце гораздо слабее притягивает планету Плутон, самую дальнюю в Солнечной системе, чем, скажем, Меркурий или Венеру. Сила гравитации уменьшается (или увеличивается) в зависимости от расстояния экспоненциально.
Что это значит? Если бы, например, Земля была удалена от Солнца в два раза больше, чем сейчас, то сила притяжения уменьшилась бы в четыре раза. Если увеличить расстояние между Солнцем и Землей в три раза, то сила тяготения уменьшилась бы в девять раз. И так далее. Если «отодвинуть» Землю достаточно далеко и свести практически к нулю силу тяготения, то Земля может разорвать путы солнечного притяжения и отправиться в самостоятельное межзвездное плавание.
Гравитация и масса тела
На силу гравитации влияет также масса тел, то есть количество вещества в них. Земля и Солнце взаимно притягивают друг друга, но поскольку масса Солнца намного больше, то оно притягивает Землю сильнее. Ученые считают, что гравитация формирует пространство, которое искривляется вокруг сгустков материи. Чем массивнее сгусток, тем больше искривляется пространство. Каким образом это происходит? Вместе с приятелем туго растяните на весу простыню. Положите на простыню тяжелый металлический шар. Простыня прогнется под тяжестью шара и примет его форму.
Если положить на простыню меньшие шары, то они скатятся к большому. По мнению ученых, нечто подобное происходит и со звездами. Они искривляют пространство, как шары простыню в вашем опыте, и заставляют другие объекты «скатываться» по направлению к ним.
Интересное видео о гравитации
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Сила тяжести — определение, причины возникновения и формулы
Общие сведения
Силой тяжести (Fт) называется величина, действующая на физическое тело, которое находится на поверхности Земли или другого астрономического объекта. Последним может быть любая планета, астероид, звезда и даже черная дыра. Следует отметить, что Fт Земли отличается от других, поскольку все зависит от следующих факторов:
- Гравитационного поля.
- Центробежной силы инерции при вращении.
Необходимо отметить, что Fт является векторной величиной. Иными словами, она имеет направление. Единицей измерения является ньютон (Н).
Существуют также и другие классы составляющих (сила притяжения Солнца и Луны), однако они не учитываются, поскольку являются очень малыми величинами. Fт сообщает физическим телам ускорение свободного падения, которое считается величиной постоянной (константой) для отдельного астрономического тела. Она не зависит от его массы.
Гравитационное притяжение
Гравитационным притяжением, или силой Всемирного тяготения, называется величина взаимодействия двух физических тел с массами M и m, зависящая также от расстояния между ними (причем M > m). Кроме того, следует обратить внимание на константу, называемую гравитационной постоянной G.
Гравитационная составляющая играет важную роль не только для выполнения расчетов в физике, но и в сохранении жизни. С помощью этой силы строятся Солнечные системы, которые объединяются в Галактики. В Солнечной системе Земля находится на нужном расстоянии от Солнца, тем самым на первой существует жизнь. Кроме того, постоянно происходит расширение Вселенной. На основании этого явления осуществляется образование новых Галактик.
Впервые закон всемирного тяготения огласил Исаак Ньютон. У него следующая формулировка: сила взаимодействия двух тел с массами m1 и m2, совершающих работу в пространстве и находящихся на расстоянии r друг от друга, прямо пропорциональна произведению их масс на гравитационную постоянную G и обратно пропорциональна квадрату расстояния между ними.
Запись в виде формулы выглядит таким образом: F = (G * m1 * m2) / r 2 . Если тело находится над поверхностью Земли, то нужно записать соотношение с учетом радиуса планеты R и его высоты над поверхностью h таким способом: F = (G * m1 * m2) / [R + h]^2.
Коэффициент G равен примерно 6,67 * 10^(-11) м 3 / (кг * с 2 ). Следует отметить, что существует определенное условие, при котором можно воспользоваться этой формулой. В этом случае следует учитывать скорость света c = 3 * 10 8 м/с, а также радиус астрономического тела R. Соотношение имеет такой вид: G * M / (R * c 2 )
Центробежная сила
Центробежной силой называется физическая величина, характеризующая составляющую действующих сил инерции. Это понятие вводят при переходе из инерциальной системы отсчета в неинерциальную, что позволяет без проблем рассчитать ускорение некоторых тел, используя баланс сил.
Вектор центробежной силы инерции Земли или другого астрономического тела всегда направлен по касательной воображаемой окружности, с которой оно аппроксимируется. Иногда физики избегают этого понятия, поскольку благодаря научно-техническому прогрессу можно рассчитывать ускорения с помощью специального программного обеспечения. Программы сами переходят из одной инерциальной системы в другую, используя методы параллельного переноса одной границы в другую с учетом теории относительности Альберта Эйнштейна, а также закона всемирного тяготения Исаака Ньютона.
Существуют также и другие сложные алгоритмы, позволяющие производить расчеты не только на Земле, но и на других космических телах. Это очень важно, поскольку при использовании такой методики были получены ускорения свободного падения (g) на различных планетах и телах. Кроме того, с учетом Fт и других сил и факторов на орбиту были выведены искусственные спутники Земли, осуществляющие информационный обмен в гражданской и военной сферах деятельности человека.
Следует отметить, что центробежная сила обозначается Fc и определяется по формуле: Fc = m * w 2 * r, где m — масса тела, а r — расстояние между физическим телом или материальной точкой и земной осью. Когда величина r является меньше радиуса Земли, тогда соотношение приобретает такой вид: Fc = m * w 2 * R * cos (q), где q — географическая широта, на которой расположено тело.
Ускорение свободного падения
Fт, действуя на тело, сообщает ему g. Используя II закон Ньютона, эту величину можно выразить в таком виде: g = Fт / m. В этом случае модуль g с высоты h будет эквивалентен такому соотношению: g (h) = (G * M) / (R + h)^2. Тогда на поверхности Земли при h = 0 формулу можно править таким методом: g (h) = (G * M) / R 2 .
Fт определяется по такому равенству: Fт = m * g. Для Земли величина g примерно равна 9,81 м/с 2 . По формуле видно, что g не зависит от массы тела, а обратно пропорционально зависит от квадрата расстояния искомого тела до центра Земли. Однако на поверхности планеты не всегда одинаковое ускорение. Сила тяжести увеличивается на полюсах Земного шара, а уменьшается на экваторе. Следовательно, увеличивается или уменьшается величина g. Это явление объясняется тем, что шар немного сплюснут по полюсам. Радиус экватора на 21,25 км больше, чем на последних.
Однако g зависит не только от широты. Следующим фактором является тип системы. Они бывают инерциальными и неинерциальными. Примером первой считается гелиоцентрическая система, а второй — Земля. В последнем случае она движется по орбите вокруг Солнца, а не стоит на месте.
Еще одним фактором, от которого зависит g, является плотность (p) залегания пород. Если p больше средней плотности Земли (залежи железной руды), то g становится больше. Далее следует разобраться в физическом смысле g.
Этот процесс проще понять на примере падающего тела с высоты 50 метров:
- На начальном уровне его скорость эквивалентна 0. Ее следует определять по такой формуле: v = g * t
- На 1 секунде (t = 1): 9,81 * 1 = 9,81 (м/с).
- При t = 2: 9,81 * 2 = 19,62 (м/с).
- t = 3: 9,81 * 3 = 29,43 (м/с).
- t = 4: 9,81 * 4 = 39,24 (м/с).
- t = 5: 9,81 * 5 = 49,05 (м/с).
Иными словами, оно равномерно разгоняется до определенной скорости с течением времени. Такое движение называется равноускоренным. Если перевести скорость на пятой секунде в км/ч, то значение будет эквивалентно величине 176,58. Однако при падении тела необходимо учитывать сопротивляемость воздуха, поскольку перо и яблоко падают не с одинаковыми показателями.
Вес тела
Весом тела (P) называется сила действия тела на опору или подвес в результате притяжения Земли. Для демонстрации этого явления необходимо рассмотреть пример взаимодействия пружины и тела, прикрепленного к ней. Под действием Fт пружина деформируется и появляется новая величина, называемая силой упругости Fупр. Необходимо отметить, что векторы Fупр и Fт направлены в противоположные стороны. Направление силы тяжести, а точнее ее вектора, осуществляется всегда вниз, а Fупр — вверх.
Кроме того, необходимо отметить, что при растяжении пружины верхняя часть тела «деформируется», отставая от всех его точек. Эта величина и называется весом тела. Формула для его определения имеет такой вид: P = Fт = m * g.
При использовании опоры, на которой лежит физическое тело, величина P будет равна реакции опоры, направленной вверх. Следовательно, модули N и Fт равны, поскольку тело не падает. Значит P определяется по следующей формуле: P = N = |Fт| = m * g. Однако природа возникновения P и Fт различна, поскольку первая приложена к подвесу или опоре. Она является результатом взаимодействия тела и последней. Вторая — взаимодействие тела и силы тяготения. Кроме того, она приложена только к телу. В этих ключевых аспектах и заключается основная разница между P и Fт.
Вес тела обладает некоторыми особенностями. Сила тяжести — составляющая P. Первый состоит из совокупности сил (реакция опоры или сила упругости, сила тяжести и тяги). А также P зависит от скорости движения подвеса или выталкивающей силы в жидкостях.
Понятие невесомости
Для понимания явления невесомости следует проделать опыт с весами и телом. Если держать весы, к которым привязано тело, то можно увидеть вес последнего, равного по модулю Fт = m * g. Однако при выпускании весов из рук показание начнет стремительно приближаться к нулевому значению. Это связано с тем, что P и Fт компенсируют друг друга, поскольку в одном и другом случаях величина g одинакова.
Математически такое явление можно записать следующим образом: P = m * (g — g) = 0. Запись показывает, что физическое тело не деформируется, поскольку движется в одном направлении с вектором Fт. Далее следует рассмотреть Космос. В нем также присутствует невесомость, но другого вида. Если космический корабль находится далеко от Земли, то силы притяжения на него практически не действуют, а, следовательно, значение Fт стремится к 0. Расчет выполняется по такой методике:
- Записывается формула силы тяжести Fт: Fт = m * g.
- Величина параметра g стремится к бесконечно малому значению, равному 0 (g -> 0), поскольку находится из уравнения: 0 = m * g. Из равенства можно вычислить g = 0 / m = 0.
- Подставив g -> 0 в формулу веса тела, можно получить такое тождество: P = m * g = m * 0 = 0.
Методика позволяет при помощи математических преобразований находить любые значения физических величин. Выражение g -> 0 показывает, что g практически равно 0. Очень важную роль сила тяжести играет в природе, поскольку влияет на некоторые необходимые для жизни процессы.
Значение в природе
Ученые установили, что без Fт невозможно существование жизни и Вселенной, поскольку она необходима для термоядерного синтеза на Солнце. Если бы не было ее, то звезды в процессе своей эволюции на конечных стадиях взрывались, распыляя в космическое пространство мощные потоки радиоактивной энергии, губительной для всего живого.
Кроме того, с ее участием формируется структура внутренней оболочки Земли. Следует обратить внимание на метеориты, которые образуются в космическом пространстве в результате уничтожения звезд или других элементов Галактики. Планеты, обладающие большей силой гравитации, помогают отвести нежелательные космические тела от нашей планеты. Например, при помощи мощного телескопа можно рассмотреть поверхность Юпитера, на которой заметно множество кратеров. Подобные изменения рельефа присутствуют также и на Марсе. Несмотря на меньшие размеры, он обладает большей массой, чем Земля, а, следовательно, и гравитационное поле мощнее.
Круговорот вещества и энергии зависит от потенциальной энергии Fт, которая постоянно переходит в кинетическую и обратно. Кроме того, при помощи этой силы удерживается атмосфера, влияющая на жизнь и защищающая от губительного излучения космического пространства и близлежащей звезды — Солнца. В результате этого существует такая характеристика, как атмосферное давление. Оно является результатом воздействия Fт на слои атмосферы.
Благодаря Fт живые организмы ориентируются в пространстве при помощи определенных рецепторов. У человека за это отвечает вестибулярный аппарат. Кроме того, постоянное воздействие Fт стало причиной образования прочного скелета у позвоночных.
Таким образом, сила тяжести играет важную роль в существовании жизни на Земле, поскольку от нее зависит множество явлений и процессов, а также в построении Вселенной.
Источник