Пояс Койпера и Облако Оорта
Солнечная система > Пояс Койпера и Облако Оорта
Пояс Койпера и Облако Оорта – области Солнечной системы: где находится, описание и характеристика с фото, интересные факты, исследование, открытие, объекты.
Пояс Койпера — крупное скопление ледяных объектов на краю нашей Солнечной системы. Облако Оорта — сферическое образование, в котором расположены кометы и другие объекты.
После обнаружения Плутона в 1930 году ученые стали предполагать, что это не самый отдаленный объект в системы. Со временем они отмечали движения других объектов и в 1992 году нашли новый участок. Давайте рассмотрим интересные факты о Поясе Койпера.
Интересные факты о Поясе Койпера
- Пояс Койпера способен вмещать сотни тысяч ледяных объектов, чей размер варьируется между небольшими осколками до 100 км в ширину;
- Большая часть короткопериодических комет поступает из пояса Койпера. Их орбитальный период не превышает 200 лет;
- В главной части пояса Койпера может скрываться более триллиона комет;
- Крупнейшими объектами выступают Плутон, Квавар, Макемаке, Хаумеа, Иксион и Варуна;
- Первая миссия к поясу Койпера отправилась в 2015 году. Это зонд Новые Горизонты, исследовавший Плутон и Харон;
- Исследователи зафиксировали структуры подобные поясу вокруг других звезд (HD 138664 и HD 53143);
- Льды в поясе сформировались еще в период создания Солнечной системы. С их помощью можно разобраться в условиях ранней туманности;
Определение Пояса Койпера
Начать объяснение нужно с того, где находится Пояс Койпера. Его можно найти за чертой орбиты планеты Нептун. Напоминает Пояс астероидов между Марсом и Юпитером, потому что располагает остатками от формирования Солнечной системы. Но по размерам в 20-200 раз крупнее него. Если бы не влияние Нептуна, то осколки слились и смогли сформировать планеты.
Обнаружение и имя Пояса Койпера
Впервые о присутствии других объектов заявил Фрекрик Леонард, назвавший их ультра-нептуновыми небесными телами за чертой Плутона. Тогда Армин Лейшнер посчитал, что Плутон может выступать всего лишь одним из многих долгопериодических планетных объектов, которые еще предстоит отыскать. Ниже представлены крупнейшие объекты Пояса Койпера.
Крупнейшие объекты пояса Койпера
Название | Экваториальный диаметр | Большая полуось, а. е. | Перигелий, а. е. | Афелий, а. е. | Период обращения вокруг Солнца (лет) | Открыт |
---|---|---|---|---|---|---|
Эрида | 2330 +10 /−10. | 67,84 | 38,16 | 97,52 | 559 | 2003 i |
Плутон | 2390 | 39,45 | 29,57 | 49,32 | 248 | 1930 i |
Макемаке | 1500 +400 /−200 | 45,48 | 38,22 | 52,75 | 307 | 2005 i |
Хаумеа | 43,19 | 34,83 | 51,55 | 284 | 2005 i | |
Харон | 1207 ± 3 | 39,45 | 29,57 | 49,32 | 248 | 1978 |
2007 OR10 | 875-1400 | 67,3 | 33,6 | 101,0 | 553 | 2007 i |
Квавар | 43,61 | 41,93 | 45,29 | 288 | 2002 i | |
Орк | 946,3 +74,1 /−72,3 | 39,22 | 30,39 | 48,05 | 246 | 2004 i |
2002 AW197 | 940 | 47,1 | 41,0 | 53,3 | 323 | 2002 i |
Варуна | 874 | 42,80 | 40,48 | 45,13 | 280 | 2000 i |
Иксион | i | |||||
2002 UX25 | 681 +116 /−114 | 42,6 | 36,7 | 48,6 | 278 | 2002 i |
В 1943 году Кеннет Эджворт опубликовал статью. Он писал, что материал за Нептуном слишком рассредоточен, поэтому не может слиться в более крупное тело. В 1951 году в обсуждение вступает Джерард Койпер. Он пишет о диске, появившемся в начале эволюции Солнечной системы. Идея с поясом всем понравилась, потому что она объясняла откуда прибывают кометы.
В 1980 году Хулио Фернандес определил, что Пояс Койпера находится на удаленности в 35-50 а.е. В 1988 году появляются компьютерные модели на основе его расчетов, которые показали, что Облако Оорта не может отвечать за все кометы, поэтому идея с поясом Койпера обретала больше смысла.
В 1987 году Дэвид Джуитт и Джейн Лу занялись активными поисками объектов, используя телескопы в Национальной обсерватории Кит-Пика и Обсерваторию Серро-Тололо. В 1992 году они объявили об открытии 1992 QB1, а через 6 месяцев – 1993 FW.
Во многих статьях авторы начали называть гипотетический участок поясом Койпера, которое и закрепилось как официальное наименование.
Но многие не согласны с этим названием, потому что Джерард Койпер имел в виду нечто иное и все почести следует отдать Фернандесу. Из-за возникших споров в научных кругах предпочитают использовать термин «транс-нептунианские объекты».
Состав Пояса Койпера
Как выглядит состав Пояса Койпера? На территории пояса проживают тысячи объектов, а в теории насчитывают 100000 с диаметром, превышающим 100 км. Полагают, что все они состоят из льда – смесь легких углеводородов, аммиака и водяного льда.
Изображение крупнейших объектов Пояса Койпера
На некоторых объектах нашли водяной лед, а в 2005 году Майкл Браун определил, что на 50000 Кваваре есть водяной лед и гидрат аммиака. Оба этих вещества исчезли в процессе развития Солнечной системы, а значит на объекте есть тектоническая активность или же произошло метеоритное падение.
В поясе зафиксировали крупные небесные тела: Квавар, Макемаке, Хаумеа, Орк и Эриду. Они и стали причиной того, что Плутон сместили в категорию карликовых планет.
Изучение Пояса Койпера
В 2006 году НАСА отправили к Плутону зонд Новые Горизонты. Он прибыл в 2015 году, впервые продемонстрировав «сердце» карлика и бывшей 9-й планеты. Теперь он отправляется в сторону пояса, чтобы рассмотреть его объекты.
О поясе Койпера мало информации, поэтому он скрывает огромное количество комет. Наиболее известная – комета Галлея с периодичностью в 16000-200000 лет.
Будущее Пояса Койпера
Джерард Койпер полагал, что ТНО не будут существовать вечно. Пояс охватывает в небе примерно 45 градусов. Объектов много, и они постоянно сталкиваются, превращаясь в пыль. Многие считают, что пройдут сотни миллионов лет и от пояса ничего не останется. Будем надеяться, что миссия Новые Горизонты доберется раньше!
Тысячелетиями человечество наблюдало за прибытием комет и пыталось понять, откуда они берутся. Если при сближении со звездой ледяной покров испаряется, то они должны располагаться на большой отдаленности.
Со временем ученые пришли к выводу, что за чертой планетарных орбит находится масштабное облако с ледяными и каменными телами. Его назвали Облаком Оорта, но оно все еще существует в теории, потому что мы не можем его увидеть.
Определение Облака Оорта
Облако Оорта — теоретическое сферическое формирование, наполненное ледяными объектами. Находится на расстоянии 100000 а.е. от Солнца, из-за чего охватывает межзвездное пространство. Как и пояс Койпера, это хранилище транс-нептуновых объектов. О его существовании впервые заговорил Эрнест Опик, считавший, что кометы могут прилетать из области на краю Солнечной системы.
В 1950-м году Ян Оорт оживил концепцию и сумел даже объяснить принципы поведения долгосрочных комет. Существование облака не доказано, но его признали в научных кругах.
Структура и состав облака Оорта
Полагают, что облако способно располагаться в 100000-200000 а.е. от Солнца. Состав Облака Оорта включает две части: сферическое внешнее облако (20000-50000 а.е.) и дисковое внутреннее (2000-20000 а.е.). Во внешнем проживают триллионы тел с диаметром в 1 км и миллиарды 20-километровых. Сведений об общей массе нет. Но если комета Галлея выступает типичным телом, то подсчеты выводят на цифру в 3 х 10 25 кг (5 земель). Ниже представлен рисунок строения Облака Оорта.
Строение облака Оорта
Большая часть комет наполнена водой, этаном, аммиаком, метаном, цианидом водорода и монооксидом углерода. На 1-2% может состоять из астероидных объектов.
Происхождение облака Оорта
Есть мнение, что Облако Оорта — остаток от изначального протопланетного диска, сформировавшегося вокруг звезды Солнца 4.6 млрд. лет назад. Объекты могли сливаться ближе к Солнцу, но из-за контакта с масштабными газовыми гигантами были вытолкнуты на большою удаленность.
Исследование от ученых НАСА показало, что огромный объем облачных объектов выступает результатом обмена между Солнцем и соседними звездами. Компьютерные модели показывают, что галактические и звездные приливы меняют кометные орбиты, делая их более круглыми. Возможно, именно поэтому Облако Оорта принимает форму сферы.
Симуляции также подтверждают, что создание внешнего облака согласуется с идеей того, будто Солнце появилось в скоплении из 200-400 звезд. Древние объекты могли повлиять на формирование, потому что их было больше и чаще сталкивались.
Кометы из Облака Оорта
Полагают, что эти объекты спокойно дрейфуют в Облаке Оорта, пока не выйдут из привычного маршрута из-за гравитационного толчка. Так они становятся долгопериодическими кометами и наведываются во внешнюю систему.
Сравнение размеров облака Оорта и Пояса Койпера
Орбита короткопериодических комет охватывает пару сотен лет, а вот у долгопериодических растягивается на десятки тысяч лет. Первые прибывают из пояса Койпера, а вторые – гости из облака. Но есть исключения.
Есть кометы Юпитера и Галлея. Вторые короткопериодические, но пребывают из Облака Оорта. Ранее они обладали длительным периодом, но попали под воздействие газового гиганта.
Изучение облака Оорта
Нам все еще не удалось добраться к поясу Койпера, а Облако Оорта расположено еще дальше. Дальше всех вылетел Вояджер-1, но ему все еще далеко. Если учитывать теперешнее ускорение, то у аппарата (сейчас в межзвездном пространстве) уйдет еще 300 лет, чтобы прибыть к началу, и 30000 лет, чтобы полностью миновать облако.
За ним следуют Пионер-10 и 11, Вояджер-2, а также Новые Горизонты. Но они выйдут из строя и не смогут передать нам сигнал.
Итак, главная трудность в исследовании – огромная удаленность. Пока зонд доберется, у нас минуют века. Сейчас мы можем лишь рассматривать прибывающие кометы. Теперь вы узнали, где находятся Пояс Койпера и Облако Оорта, а также получили представление об объектах и их движении по Солнечной системе.
Источник
Пояс Койпера
Пояс Койпера — это дискообразная область ледяных объектов за орбитой Нептуна – в миллиардах километрах от нашего Солнца. Пояс Койпера и еще более далекое Облако Оорта, как полагают, являются домом для комет, вращающихся вокруг Солнца.
Пояс Койпера
В 1992 году астроном Дэвид Джевитт обнаружил объект 1992 QB1 за пределами Солнечной системы. В течение следующих пяти лет он обнаружил еще 40 – 50 подобных объектов. К середине 2016 года число найденных объектов составило 2000. Область обнаруженных объектов получила название «Пояс Койпера». Учёные на данный момент не знают, где он заканчивается. Не знают, что происходит на наружном крае пояса Койпера и где он находится, но знают, что он очень далеко: некоторые открытые объекты пояса Койпера имеют необычные орбиты, которые в 2000 раз больше, чем расстояние между Землей и Солнцем. Несмотря на то что объектов пояса Койпера очень много, учёные обнаружили, что их масса довольно мала и равна только 10% от массы Земли или 2/3 Луны. Это было загадкой: как формируются эти тела, если у них такая маленькая масса? Эти тела растут очень медленно. Модели малой массы пояса Койпера стали горячей темой. Они были основаны на идее, что пояс Койпера был гораздо более массивным, когда начал формироваться, — в 20 или 40 раз массивнее Земли. Но большая часть массы была потеряна.
Предполагают, что всего в поясе Койпера имеется около 500 тысяч астероидов размером более 30 км. По площади пояс Койпера в полтора раза превышает ту часть Солнечной системы, вокруг которой он расположен, то есть ограниченную орбитой Нептуна. Более 90% новых объектов движутся по почти круговым «классическим» орбитам, расположенным на расстояниях от 30 до 50 астрономических единиц от Солнца. Поэтому очертания пояса Койпера имеют вид толстого бублика, в пределах которого движутся тысячи небольших небесных тел. На расстоянии примерно 48 а. е. от Солнца плотность пояса Койпера резко падает. Пока отсутствуют причины, объясняющие, почему пояс не может простираться дальше этого барьера Койпера. Астрономы не могут определиться с тем, действительно ли это уже край или всего лишь широкий интервал, в котором может находиться еще один существующий мир — так называемая планета X.
Крупнейшие объекты пояса Койпера
Начиная с 2000 года число объектов пояса Койпера с диаметрами от 500 до 1200 км (около половины диаметра Плутона) стало быстро возрастать. Это постепенно привело к пониманию Плутона как одного из самых крупных, но по сути рядового члена пояса Койпера.
Эрида – плутоид
Диаметр — 2330 км.
Расстояние до Солнца 14,61 млрд. км.
Ранее была известна под названием Ксена (Зена). Большой эксцентриситет орбиты у Эриды приводит к регулярным изменениям на её поверхности и даже к бегущим через всю карликовую планету газовым течениям.
Плутон – плутоид
Диаметр — 2390 км.
Расстояние до Солнца 5,9 млрд. км.
Первоначально он считался планетой, но был переклассифицирован как карликовая планета. В честь Плутона подгруппу из известных на данный момент карликовых планет, обращающихся за орбитой Нептуна, называют «плутоидами».
Макемаке – плутоид
Диаметр — 1500 км.
Расстояние до Солнца 6,9 млрд. км.
Со времени возникновения Солнечной системы ледяная планета четко следует по своему пути, не подвергаясь влиянию Нептуна.
Хаумеа – плутоид
Диаметр — 1500 км.
Расстояние до Солнца 7,7 млрд. км.
Хаумеа имеет сильно вытянутую форму. Возможно, этот «волчок» пояса Койпера родился в результате столкновения двух небесных тел.
Харон – спутник Плутона
Диаметр — 1207 км.
Расстояние до Солнца 5,9 млрд. км.
Харон — спутник Плутона. Он имеет большие размеры и всего в 2 раза меньше по диаметру своего хозяина. Ни один спутник в Солнечной системе не обладает таким размером по отношению к своей планете.
Квавар – карликовая планета
Диаметр — 1100 км.
Расстояние до Солнца 6 млрд. км.
Орбита Квавара — почти круговая. Ее эксцентриситет (мера вытянутости эллипса) меньше 0.04, что означает, что его расстояние до Солнца меняется меньше, чем на 8%. В этом он сильно отличается от Плутона, эксцентриситет которого в 6 раз больше.
Орк – карликовая планета
Диаметр — 946,3 км.
Расстояние до Солнца 5,8 млрд. км.
Орбита Орка весьма напоминает по параметрам орбиту Плутона. Интересно, что Орк всегда находится на противоположной стороне орбиты по отношению к Плутону. В связи с этим, Орк иногда называют «Анти-Плутон».
Варуна – карликовая планета
Размеры — 859 × 453 км.
Расстояние до Солнца 6,4 млрд. км.
Варуна имеет вытянутую форму. Варуна классифицируется как классический транснептуновый объект и следует по почти круговой орбите.
Иксион – карликовая планета
Диаметр — 650 км.
Расстояние до Солнца 5,9 млрд. км.
Как и Плутон, Иксион находится в орбитальном резонансе 2:3 с Нептуном (делает два оборота вокруг Солнца за то же время, которое необходимо Нептуну для трёх оборотов).
Пояс Койпера не следует путать с гипотетическим облаком Оорта, которое расположено в тысячи раз дальше. Объекты пояса Койпера, как и объекты рассеянного диска и облака Оорта, относят к транснептуновым объектам.
Источник