Меню

Почему звезды не греют нас как солнце

Почему в космосе холодно, если Солнце горячее

Солнце находится на расстоянии около 150 миллионов километров от Земли, но мы можем чувствовать его тепло каждый день. Удивительно, как горящий объект издалека может излучать тепло на таком большом расстоянии.

Мы не говорим о температурах, которые едва регистрируют его присутствие. В 2019 году температура в Кувейте достигла 63 ° C под прямыми солнечными лучами. Если вы будете стоять при таких температурах в течение длительного периода, вы рискуете умереть от теплового удара.

Но больше всего озадачивает то, что космическое пространство остается холодным. Итак, почему пространство такое холодное, если Солнце такое жаркое?

Чтобы понять это удивительное явление, важно сначала распознать разницу между двумя терминами, которые часто используются взаимозаменяемо: тепло и температура.

Роль тепла и температуры

Проще говоря, тепло — это энергия, хранящаяся внутри объекта, в то время как тепло или холодность этого объекта измеряется температурой. Таким образом, когда тепло передается объекту, его температура повышается. И происходит снижение значения температуры, когда тепло извлекается из объекта.

Эта передача тепла может происходить через три режима: проводимость, конвекция и излучение.

Теплопередача через проводимость происходит в твердых телах. Когда твердые частицы нагреваются, они начинают вибрировать и сталкиваться друг с другом, передавая тепло при этом от более горячих частиц к более холодным.

Теплопередача через конвекцию — явление, наблюдаемое в жидкостях и газах. Этот режим теплопередачи также происходит на поверхности между твердыми телами и жидкостями.

Когда жидкость нагревается, молекулы поднимаются вверх и переносят тепловую энергию вместе с ними. Комнатный обогреватель — лучший пример, демонстрирующий конвективный теплообмен.

Когда обогреватель нагревает окружающий воздух, температура воздуха будет повышаться, и воздух поднимется до верха комнаты. Присутствующий сверху холодный воздух вынужден двигаться вниз и нагреваться, создавая конвекционный ток.

Передача тепла посредством излучения — это процесс, при котором объект выделяет тепло в форме света. Все материалы излучают некоторое количество тепловой энергии в зависимости от их температуры.

При комнатной температуре все объекты, включая нас, людей, излучают тепло в виде инфракрасных волн. Из-за излучения тепловизионные камеры могут обнаруживать объекты даже ночью.

Чем горячее объект, тем больше он будет излучать. Солнце является отличным примером теплового излучения, которое переносит тепло через солнечную систему.

Теперь, когда вы знаете разницу между теплом и температурой, мы очень близки к тому, чтобы ответить на вопрос, поставленный в заголовке этой статьи.

Теперь мы знаем, что температура может влиять только на материю. Однако в космосе недостаточно частиц, и это почти полный вакуум и бесконечное пространство.

Это означает, что передача тепла неэффективна. Невозможно передать тепло посредством проводимости или конвекции.

Излучение остается единственной возможностью.

Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие объект, начинают поглощать энергию. Эта энергия начинает двигаться атомы вибрировать и заставлять их производить в процессе тепло.

Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени.

Горячие предметы остаются горячими, а холодные остаются холодными.

Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло.

Это естественно вызывает вопрос: Что произойдет, если мы поместим что-то вне атмосферы Земли?

Космическое пространство может с легкостью заморозить или сжечь вас

Когда объект находится за пределами земной атмосферы и при прямом солнечном свете, она будет нагрета до около 120°C. Объекты вокруг Земли, и в космическом пространстве, которые не получают прямых солнечных лучей находятся в пределах 10°C.

Читайте также:  Зарядка солнечной батареи если нет солнца

Температура 10°C обусловлена ​​нагревом некоторых молекул, покидающих земную атмосферу. Однако, если мы измерим температуру пустого пространства между небесными телами в космосе, это будет всего на 3 Кельвина выше абсолютного нуля.

Итак, главный вывод здесь заключается в том, что температуру Солнца можно почувствовать только в том случае, если есть материя, чтобы поглотить ее, в космосе почти нет материи, отсюда и холод.

Две стороны солнечного тепла

Мы знаем, что в затененных областях холодно. Лучшим примером является ночное время, когда температура снижается, так как в этой части Земли нет излучения.

Однако в космосе все немного по-другому. Да, объекты, которые скрыты от солнечного излучения, будут холоднее, чем пятна, которые получают солнечный свет, но разница довольно существенная.

Объект в космосе столкнется с двумя экстремальными температурами с двух сторон.

Давайте возьмем для примера Луну. Области, которые получают солнечный свет, нагреваются до 127°C, а темная сторона Луны будет при температуре замерзания -173°C.

Но почему земля не имеет таких же эффектов? Благодаря нашей атмосфере инфракрасные волны от солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены.

Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.

Другим примером, показывающим полярность температуры в космосе, является влияние солнца на солнечный зонд Parker. Солнечный зонд Parker — это программа НАСА, где зонд был отправлен в космос для изучения Солнца.

Солнечный зонд «Паркер»

В апреле 2019 года зонд находился всего в 15 миллионах миль от Солнца. Чтобы защитить себя, он использовал теплозащитный экран.

Температура теплового экрана, когда он был бомбардирован солнечным излучением, составляла 121°C, в то время как остальная часть зонда имела -150°C.

Космос — это лучший термос

Когда нагревать нечего, температура системы остается прежней. Это относится и к космосу. Солнечное излучение может проходить через него, но нет молекул или атомов, чтобы поглотить это тепло.

Даже когда скала нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.

Следовательно, даже когда солнце излучает, пространство остается холодным как лед!

Источник

NASA нашло новые доказательства того, что наше Солнце — не совсем обычная звезда

Около двух лет назад NASA запустило по направлению к Солнцу космический зонд Parker, который наконец-то достиг максимально близкого к нашей звезде расстояния и передал первые результаты своих наблюдений за светилом. Выяснилось, что странности в поведении магнитного поля Солнца, включая его сверхбыстрые развороты, длящиеся всего несколько секунд, отнюдь на этом не заканчиваются. Чем же наша, казалось бы, хорошо изученная звезда может нас удивить?

Наше Солнце может быть еще страннее, чем оно кажется

Почему корона Солнца горячее, чем его поверхность?

Как сообщает портал newsweek.com, первые результаты миссии были опубликованы в четырех научных статьях журнала Nature. Несмотря на то, что Солнце является ключевым фактором существования жизни на Земле, существуют огромные пробелы в нашем понимании целого множества явлений, происходящих в его окрестностях. Так, известно, что корона — самая внешняя часть атмосферы — намного горячее самой поверхности Солнца, достигая около миллиона градусов Цельсия по сравнению с 5500 градусами. Причина подобного явления ученым до сих пор неизвестна. Вместе с тем, наша звезда также производит так называемый солнечный ветер, который постоянно бомбардирует магнитное поле Земли. Однако как именно и почему он возникает?

Для того, чтобы помочь специалистам разобраться в столь непростых вопросах, был спроектирован зонд Parker, который приблизился к Солнцу ближе, чем любой другой искусственный объект за всю историю человечества. Во время своих последних трех полетов, запланированных на 2024 и 2025 годы, он приблизится к поверхности Солнца на расстояние, составляющее 6 миллионов километров. В настоящее же время солнечный зонд вращается на приблизительном расстоянии около 24 миллионов километров от нашей звезды в своей ближайшей точке от светила.

Читайте также:  Иду за солнцем следом хоть этот путь неведом

Солнечная корона таит в себе множество загадок

Первые исследования космического зонда были направлены на изучение солнечной короны и ее магнитных полей. Известно, что именно корона производит электроны солнечного ветра, которые заметно ускоряются, покидая место своего появления.
С помощью новых наблюдений, команда обнаружила, что в то время как «быстрый» солнечный ветер, чья скорость может достигать 900 километров в секунду, исходит из больших отверстий в короне на Северном и Южном полюсах Солнца, «медленный» солнечный ветер исходит из меньших отверстий в той части короны, которая расположена вблизи экватора. Известно, что самый быстрый из зарегистрированных солнечных ветров двигался со скоростью 1,8 миллионов километров в час.

Кстати говоря, найти еще больше полезной информации из астрономии вы можете на наших официальных каналах в Telegram и Яндекс.Дзен.

Группа исследователей из НАСА также доказала, что солнечный ветер вращается вокруг Солнца от 10 до 20 раз быстрее, чем предсказывали стандартные модели. Столь впечатляющие скорости могут быть связаны с неожиданными изменениями в магнитном поле звезды. Исследователи обнаружили, что магнитные поля могут быть прослежены вплоть до корональных дыр, иногда внезапно поворачиваясь на целых 180 градусов в течение всего лишь нескольких секунд.

В настоящее время солнечный зонд Parker продолжает вращаться вокруг нашей звезды, становясь немного ближе с каждым кругом. Активность на Солнце увеличивается и уменьшается в течение 11-летнего цикла, который в настоящий момент находится в «солнечном минимуме», характеризующемся меньшим количеством солнечных пятен, чем обычно. В ближайшие годы активность Солнца будет расти, пока не достигнет так называемого «солнечного максимума», который произойдет к концу миссии зонда Parker в 2024 году.

Источник

Почему в космосе холодно, если Солнце горячее?

Порой я часто слышу интересные вопросы, например: почему в космосе холодно, если там так много горячих звёзд? Почему на ночной стороне Меркурия температура может достигать – 190 С, хотя он так близко расположен к Солнцу, ведь на дневной стороне этой планеты может быть + 430 С ?

Все тела Солнечной системы получают тепло и свет от единого источника – Солнца. Тепло от любой звезды распространяется в космос в виде излучения – инфракрасной волны энергии, которая перемещается от раскалённых объектов к холодным. Волны излучения пробуждают молекулы и заставляют их нагреваться – так и распространяется тепло от звезды к другим телам. Но есть один момент: излучение нагревает только те молекулы, которые находятся у него на пути. Именно поэтому на дневной стороне Меркурия очень жарко, до + 430 С, а на ночной – жуткий холод.

На Венере жарче, чем на Меркурии, несмотря на то, что она дальше от Солнца. Температура на второй планете Солнечной системы достигает + 460 С, причём, неважно, на полюсах ли вы будете её измерять или на экваторе, в тени или на светлой стороне: всё дело в атмосфере, состоящей на примерно на 98 % из углекислого газа, и в вызванном им мощном парниковом эффекте.

Тепло распространяется тремя способами: проводимость (например, когда вы положили холодные руки на тёплую батарею, тепло передаётся при непосредственном контакте), конвекция (когда вы греетесь, сидя у батареи, не касаясь её, – это явление переноса энергии самими струями жидкости или газа – в данном случае вы получаете тепло от движущихся горячих потоков воздуха) и излучение . Когда лучи звёзд нагревают молекулы в земной атмосфере, то те передают энергию другим молекулам, расположенным ниже. Так возникает цепная реакция, которая нагревает те области, что остались за пределами солнечного луча.

Читайте также:  Встретит воля у ворот за собою поведет солнце греет

В космосе же негде возникать этой цепной реакции, так как вакуум – это слишком разреженное пространство, в котором атомы находятся очень далеко друг от друга, поэтому они не могут постоянно сталкиваться и обмениваться теплом. Получается, что проводимость не подходит.

Конвекция может работать лишь там, где может возникнуть сила тяжести, ведь потоки теплого воздуха более легкие и поднимаются вверх, а холодные – более плотные и тяжёлые — опускаются ниже. В невесомости конвекция попросту не может существовать, поэтому она тоже не подойдёт.

А что насчёт излучения? Получается, что оно остаётся единственной возможностью! Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие этот объект, начинают поглощать энергию. Эта энергия заставляет атомы двигаться и производить тепло в процессе своего движения. Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени. Горячие предметы остаются горячими, а холодные остаются холодными. Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло, и нам кажется, что тёплые солнечные лучи нас согревают, только вот на самом деле это не тёплые лучи, а прогретый воздух, попавший под излучение. В космосе исходит излучение от звёзд, но нет молекул и атомов, способных его поглотить. Даже когда скалистая поверхность объекта нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.

Таким образом, температуру звезды можно почувствовать только в случае, если есть материя, способная её поглотить. Поскольку в открытом космосе пространство практически пустое (в вакууме атомы вещества находятся слишком далеко друг от друга, чтобы «дотянуться» до своих соседей и передать им энергию), в космосе царит холод.

На дневной стороне на Меркурии мы бы поджарились, так как там будет действовать теплообмен: представьте, если вас бросят на раскалённую сковородку – эффект будет примерно таким же. На Земле мы мёрзнем в холодной воде, или на улице зимой в мороз, потому что воздух и вода являются теплообменниками, которые всё время взаимодействуют с живыми телами, отбирая у них тепло. Тепловое излучение человека невелико, поэтому, окажись он в открытом космосе вдали от звёзд без скафандра, он не превратится моментально в сосульку – да, переохлаждение наступит, но далеко не сразу, так как нет внешнего источника тепла – звезды, горячей поверхности или атмосферы. А вот если подлететь в окрестности Меркурия и даже ближе, то солнечные лучи встретят на своём пути материю — в данном случае нас, и заставят атомы нашего тела двигаться — отсюда получится и перегрев.

Кстати, на Луне перепады температур экстремальные: на солнечной стороне температура поднимается до + 127 С, а на теневой может опускаться до – 170 С. Почему же на Земле нет такого эффекта? Благодаря нашей атмосфере инфракрасные волны от Солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены. Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.

Источник

Adblock
detector