Меню

По каким траекториям движутся космические аппараты луны

Научные Чтения

памяти К.Э.Циолковского

г. Калуга

Россия

ТРАЕКТОРИИ ПОЛЁТА КОСМИЧЕСКИХ АППАРАТОВ К ЛУНЕ

© А.Т.Митин, А.А.Митина
© Государственный музей истории космонавтики им. К.Э. Циолковского, г. Калуга
Секция «К.Э. Циолковский и проблемы профессиональной деятельности космонавтов»
2012 г.

Межпланетные перелеты в последнее время стали одним из основ-ных направлений космических исследований, которое вызывает повышен-ный интерес как ученых, так и широкой общественности.

В этих условиях Луна может рассматриваться как конечная цель межпланетного перелета, так и как стартовая площадка для осуществления полета к другим планетам, расположенным значительно дальше. Поэтому определенный интерес представляет и такой частный вопрос как траекто-рии полета космических аппаратов (КА) к Луне, вокруг нее и посадки на Луну.

Для достижения Луны могут быть использованы траектории любого вида: эллипсы, параболы, гиперболы и прямые линии. Необходимо только, чтобы траектория КА пересекла орбиту Луны или коснулась ее. Упрежден-ная точка встречи с Луной выбирается с таким расчетом, чтобы Луна за время движения КА пришла в эту точку.

Траектория движения КА к Луне может лежать в плоскости орбиты Луны или составлять с ней некоторый угол.

При фиксированном значении угла траектории полета КА по мере увеличения начальной скорости полета траектория движения КА стремится к прямой линии, а угловая дальность движения КА уменьшается. При фик-сированном значении начального угла траектории движения КА с больши-ми дальностями обладают меньшими энергиями, следовательно, и мень-шими начальными скоростями.

При выборе траектории движения КА учитывают величину началь-ной скорости и время полета. Увеличение минимальной скорости полета в исходной точке на 0,05 км/с вдвое сокращает продолжительность перелета. При скорости полета, близкой к параболической скорости, равной 11,0 км/c, продолжительность полета равна двум суткам. При скорости, равной 11,5 км/c, продолжительность полета равна одним суткам.

Полет КА, стартующих с поверхности Земли, в плоскости орбиты Луны возможен лишь в том случае, если космодром расположен в приле-гающей к экватору зоне, занимающей диапазон широт     (  накло-нение плоскости орбиты Луны к экватору Земли).

Вследствие того, что склонение Луны в течение 27,32 суток изменя-ется от минимального до максимального значения, существует небольшой промежуток времени (около семи суток), когда возможен полет к Луне с минимальными гравитационными потерями. При пуске КА в другое время требуется больше затрат энергии на преодоление гравитационных потерь.

Если вывести КА на промежуточную орбиту вокруг Земли с накло-нением 90, то на орбите можно выбрать точку, обеспечивающую полет по траектории с любой угловой дальностью.

На обеспечение полета КА к Луне оказывают значительное влияние погрешности в выполнении начальных условий полета.

Ошибка в величине начальной скорости приводит к искажению тра-ектории КА, которая будет иметь более прямолинейную форму по сравне-нию с расчетной при завышении начальной скорости и будет обладать большей кривизной при занижении. В первом случае продолжительность полета КА сократится, а во втором – увеличится.

Особенно чувствительны к ошибкам скорости траектории мини-мальных энергий. Эти ошибки приводят к значительным отклонениям во времени полета КА. Для траекторий полета КА с большими начальными скоростями продолжительность перелета меняется незначительно в случае возникновения ошибки скорости.

Ошибки угла ориентации вектора начальной скорости приводят к изменению формы траектории движения КА и к смещению точки пересе-чения орбиты Луны и траектории КА. В этих условиях возможна ситуация, когда КА не встретится с Луной.

Траектории минимальных энергий менее чувствительны к ошибкам ориентации вектора начальной скорости. При ошибке ориентации вектора скорости в плоскости орбиты перелета, не превышающей 1, встреча КА с Луной обеспечена.

Если выдержаны направление и величина вектора скорости, а старт КА осуществляется с опозданием, то при пуске с Земли вся траектория по-лета КА повернется на угол. Величина этого угла определяется временем задержки пуска и угловой скоростью вращения Земли, а при запуске с ор-биты отправления – временем задержки пуска, гравитационным парамет-ром Земли, фокальным параметром орбиты отправления и радиус-вектором точки старта КА. Ошибки момента старта могут достигать нескольких се-кунд при пуске с орбиты отправления и нескольких минут – с поверхности Земли.

Если по условиям полета требуется осуществить посадку КА на за-данный участок лунной поверхности, то решить эту задачу при пуске кос-мического корабля с орбиты или с поверхности Земли практически невоз-можно. В этом случае необходима коррекция траектории полета космиче-ского корабля. Для чего на борту КА устанавливаются автономные средст-ва навигации.

Читайте также:  Чему равен диаметр земли во сколько раз луна меньше земли

Создание пилотируемого комплекса для полета к другим планетам потребует практической реализации многих новейших технологий, кото-рые затем могут использоваться в интересах общества.

Copyright © ФГБУК «ГМИК имени К.Э. Циолковского». Все права защищены.
Права на материалы тезисов докладов принадлежат авторам докладов.
Для перепечатки материалов необходимо письменное разрешение.

Источник

По каким траекториям движутся космические аппараты луны

§ 14. Д вижение небесных тел под действием сил тяготения

1. Закон всемирного тяготения

С огласно закону всемирного тяготения, изученному в курсе физики,

все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

F = G ,

где m 1 и m 2 — массы тел; r — расстояние между ними; G — гравитационная постоянная.

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643—1727) доказать тождественность силы, удерживающей Луну при её движении вокруг Земли, и силы, вызывающей падение тел на Землю.

Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 её радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с 2 . Следовательно, ускорение Луны должно составлять 0,0027 м/с 2 .

В то же время Луна, как любое тело, равномерно движущееся по окружности, имеет ускорение

где ω — угловая скорость Луны; r — радиус её орбиты. Если считать, что радиус Земли равен 6400 км, то радиус лунной орбиты будет составлять r = 60 • 6 400 000 м = 3,84 • 10 8 м. Звёздный период обращения Луны T = 27,32 суток, в секундах составляет 2,36 • 10 6 с. Тогда ускорение орбитального движения Луны

a = • r = • 3,84 • 10 8 м = 0,0027 м/с 2 .

Равенство этих двух величин ускорения доказывает, что сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли.

Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная:

= = = . = const.

Ускорение планеты равно

a = = = 4 π 2 .

Из третьего закона Кеплера следует

= ,

поэтому ускорение планеты равно

a = 4 π 2 • const .

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения.

2. Возмущения в движении тел Солнечной системы

З аконы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называются возмущениями .

Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли. Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера.

В настоящее время возмущения учитываются при вычислении положения планет, их спутников и других тел Солнечной системы, а также траекторий космических аппаратов, запускаемых для их исследования. Но ещё в XIX в. расчёт возмущений позволил сделать одно из самых известных в науке открытий «на кончике пера» — открытие планеты Нептун.

Проводя очередной обзор неба в поиске неизвестных объектов, Вильям Гершель в 1781 г. открыл планету, названную впоследствии Ураном. Спустя примерно полвека стало очевидно, что наблюдаемое движение Урана не согласуется с расчётным даже при учёте возмущений со стороны всех известных планет. На основе предположения о наличии ещё одной «заурановой» планеты были сделаны вычисления её орбиты и положения на небе. Независимо друг от друга эту задачу решили Джон Адамс в Англии и Урбен Леверье во Франции. На основе расчётов Леверье немецкий астроном Иоганн Галле 23 сентября 1846 г. обнаружил в созвездии Водолея неизвестную ранее планету — Нептун. Это открытие стало триумфом гелиоцентрической системы, важнейшим подтверждением справедливости закона всемирного тяготения. В дальнейшем в движении Урана и Нептуна были замечены возмущения, которые стали основанием для предположения о существовании в Солнечной системе ещё одной планеты. В 1930 г. после просмотра большого количества фотографий звёздного неба был обнаружен Плутон, который, как оказалось, является одним из множества объектов, расположенных за орбитой Нептуна.

Читайте также:  Радуга вечером с луной

3. Масса и плотность Земли

З акон всемирного тяготения позволил определить массу нашей планеты. Исходя из закона всемирного тяготения, ускорение свободного падения можно выразить так:

g = G .

Подставим в формулу известные значения этих величин: g = 9,8 м/с 2 , G = 6,67 • 10 –11 Н • м 2 /кг 2 , R = 6370 км — и получим, что масса Земли M = 6 • 10 24 кг.

Зная массу и объём земного шара, можно вычислить его среднюю плотность: 5,5 • 10 3 кг/м 3 . С глубиной за счёт увеличения давления и содержания тяжелых элементов плотность возрастает.

4. Определение массы небесных тел

Б олее точная формула третьего закона Кеплера, которая была получена Ньютоном, даёт возможность определить одну из важнейших характеристик любого небесного тела — массу. Выведем эту формулу, считая (в первом приближении) орбиты планет круговыми.

Пусть два тела, имеющие массы m 1 и m 2 , взаимно притягивающиеся и обращающиеся вокруг общего центра масс, находятся от центра масс на расстоянии r 1 и r 2 и обращаются вокруг него с периодом T . Расстояние между их центрами R = r 1 + r 2 . На основании закона всемирного тяготения ускорение каждого из этих тел равно:

a 1 = G , a 2 = G .

Угловая скорость обращения вокруг центра масс составляет ω = . Тогда центростремительное ускорение выразится для каждого тела так:

a 1 = r 1 , a 2 = r 2 .

Приравняв полученные для ускорений выражения, выразив из них r 1 и r 2 и сложив их почленно, получаем:

G = = ( r 1 + r 2 ),

= .

Поскольку в правой части этого выражения находятся только постоянные величины, оно справедливо для любой системы двух тел, взаимодействующих по закону тяготения и обращающихся вокруг общего центра масс, — Солнце и планета, планета и спутник. Определим массу Солнца, для этого запишем выражение:

= ,

где M — масса Солнца; m 1 — масса Земли; m 2 — масса Луны; T 1 и a 1 — период обращения Земли вокруг Солнца (год) и большая полуось её орбиты; T 2 и a 2 — период обращения Луны вокруг Земли и большая полуось лунной орбиты.

Пренебрегая массой Земли, которая ничтожно мала по сравнению с массой Солнца, и массой Луны, которая в 81 раз меньше массы Земли, получим:

= .

Подставив в формулу соответствующие значения и приняв массу Земли за единицу, мы получим, что Солнце примерно в 333 тыс. раз по массе больше нашей планеты.

Массы планет, не имеющих спутников, определяют по тем возмущениям, которые они оказывают на движение астероидов, комет или космических аппаратов, пролетающих в их окрестностях. Об определении массы звёзд см. в § 23.

П од действием взаимного притяжения частиц тело стремится принять форму шара. Если эти тела вращаются, то они деформируются, сжимаются у полюсов.

Кроме того, изменение их формы происходит и под действием взаимного притяжения, которое вызывают явления, называемые приливами . Давно известные на Земле, они получили объяснение только на основе закона всемирного тяготения.

Рис. 3.13. Схема лунных приливов

Рассмотрим ускорения, создаваемые притяжением Луны в различных точках земного шара (рис. 3.13). Поскольку точки A , B и O находятся на различных расстояниях от Луны, ускорения, создаваемые её притяжением, будут различны.

Разность ускорений, вызываемых притяжением другого тела в данной точке и в центре планеты, называется приливным ускорением.

Приливные ускорения в точках A и B направлены от центра Земли. В результате Земля, и в первую очередь её водная оболочка, вытягивается в обе стороны по линии, соединяющей центры Земли и Луны. В точках A и B наблюдается прилив, а вдоль круга, плоскость которого перпендикулярна этой линии, на Земле происходит отлив. Тяготение Солнца также вызывает приливы, но из-за большей его удалённости они меньше, чем вызванные Луной. Приливы наблюдаются не только в гидросфере, но и в атмосфере и в литосфере Земли и других планет.

Вследствие суточного вращения Земля стремится увлечь за собой приливные горбы, в то же время вследствие тяготения Луны, которая обращается вокруг Земли за месяц, полоса приливов должна перемещаться по земной поверхности значительно медленнее. В результате между огромными массами воды, участвующей в приливных явлениях, и дном океана возникает приливное трение. Оно тормозит вращение Земли и вызывает увеличение продолжительности суток, которые в прошлом были значительно короче (5—6 ч). Тот же эффект ускоряет орбитальное движение Луны и приводит к её медленному удалению от Земли. При этом приливы со стороны Земли на Луне затормозили её вращение, и она теперь обращена к Земле одной стороной. Такое же медленное вращение характерно для многих спутников Юпитера и других планет. Сильные приливы, вызываемые на Меркурии и Венере Солнцем, по-видимому, являются причиной их крайне медленного вращения вокруг оси.

Читайте также:  Полная луна с радугой

6. Движение искусственных спутников Земли и космических аппаратов к планетам

В озможность создания искусственного спутника Земли теоретически обосновал ещё Ньютон. Он показал, что существует такая горизонтально направленная скорость , при которой тело, падая на Землю, тем не менее на неё не упадёт, а будет двигаться вокруг Земли, оставаясь от неё на одном и том же расстоянии. При такой скорости тело будет приближаться к Земле вследствие её притяжения как раз на столько, на сколько из-за кривизны поверхности нашей планеты оно будет от неё удаляться (рис. 3.14). Эта скорость, которую называют первой космической (или круговой), известна вам из курса физики:

v 1 = = 7,9 • 10 3 м/с = 7,9 км/с.

Рис. 3.14. Орбита искусственного спутника Земли

Практически осуществить запуск искусственного спутника Земли оказалось возможно лишь через два с половиной столетия после открытия Ньютона — 4 октября 1957 г. За время, прошедшее с этого дня, который нередко называют началом космической эры человечества, искусственные спутники самого различного устройства и назначения заняли важное место в нашей повседневной жизни. Они обеспечивают непрерывный мониторинг погоды и других природных явлений, трансляции телевидения и т. п. Спутниковая навигационная система ГЛОНАСС и другие системы глобального позиционирования позволяют в любой момент с высокой степенью точности определить координаты любой точки на Земле. Пожалуй, нет в наши дни ни одной глобальной проблемы, в решении которой не принимали участие искусственные спутники Земли (ИСЗ).

Космические аппараты (КА), которые направляются к Луне и планетам, испытывают притяжение со стороны Солнца и согласно законам Кеплера так же, как и сами планеты, движутся по эллипсам. Скорость движения Земли по орбите составляет около 30 км/с. Если геометрическая сумма скорости космического аппарата, которую ему сообщили при запуске, и скорости Земли будет больше этой величины, то КА будет двигаться по орбите, лежащей за пределами земной орбиты. Если меньше — то внутри орбиты Земли. В первом случае, если аппарат летит к Марсу (рис. 3.15) или другой внешней планете, энергетические затраты будут наименьшими, если КА достигнет орбиты этой планеты при своём максимальном удалении от Солнца — в афелии. Кроме того, необходимо так рассчитать время старта КА, чтобы к этому моменту в ту же точку своей орбиты пришла планета. Иначе говоря, начальная скорость и день запуска КА должны быть выбраны таким образом, чтобы КА и планета, двигаясь каждый по своей орбите, одновременно подошли к точке встречи. Во втором случае — для внутренней планеты — встреча с КА должна произойти в перигелии его орбиты (рис. 3.16). Такие траектории полётов называются полуэллиптическими . Большие оси этих эллипсов проходят через Солнце, которое находится в одном из фокусов, как и полагается по первому закону Кеплера.

Рис. 3.15. Траектория полёта KA к Марсу

Рис. 3.16. Траектория полёта KA к Венере

Конструкция и оборудование современных КА обеспечивают возможность совершения ими весьма сложных манёвров — выход на орбиту спутника планеты, посадка на планету, передвижение по её поверхности и т. п.

В опросы 1. Почему движение планет происходит не в точности по законам Кеплера? 2. Как было установлено местоположение планеты Нептун? 3. Какая из планет вызывает наибольшие возмущения в движении других тел Солнечной системы и почему? 4. Какие тела Солнечной системы испытывают наибольшие возмущения и почему? 5. По каким траекториям движутся космические аппараты к Луне; к планетам? 6*. Объясните причину и периодичность приливов и отливов. 7*. Будут ли одинаковы периоды обращения искусственных спутников Земли и Луны, если эти спутники находятся на одинаковых расстояниях от них?

У пражнение 12 1. Определите массу Юпитера, зная, что его спутник, который отстоит от Юпитера на 422 000 км, имеет период обращения 1,77 суток. Для сравнения используйте данные для системы Земля—Луна. 2. Ускорение силы тяжести на Марсе составляет 3,7 м/с 2 , на Юпитере — 25 м/с 2 . Рассчитайте первую космическую скорость для этих планет. 3. Сколько суток (примерно) продолжается полёт КА до Марса, если он проходит по эллипсу, большая полуось которого равна 1,25 а. е.?

Источник

Adblock
detector