Меню

Плотность потока радиоизлучения солнца

Плотность потока радиоизлучения солнца

После открытия радиоизлучения Солнца в 1947 г. введён новый индекс солнечной активности – поток радиоизлучения F10.7 c длиной волны 10.7 см (2800 МГц). Он измеряется в солнечных единицах потока: 1 с.е.п. = 10 -22 Вт/(м 2 ·Гц).

Данный индекс характеризует изменения температуры и плотности на всём видимом диске Солнца. Его изменения хорошо коррелируют с изменениями чисел Вольфа и суммарной площади пятен и является удобной ежедневной характеристикой солнечной активности.

Ежедневные измерения интегрированного излучения от солнечного диска на частоте 2800 МГц (длине волны 10.7 см) выполняются по программе радиомониторинга Солнца, проводимой Национальным Исследовательским Советом Канады с 1947 г. До 31 мая 1991 года наблюдения проводились в радиообсерватории Алгонквин (Algonquin), недалеко от Оттавы. С 1 июня 1991 года наблюдения ведутся в Радиоастрофизической обсерватории Доминиона , расположенной недалеко от Пентиктона (Penticton), Британская Колумбия.

Результаты наблюдений в виде ежедневных, среднемесячных и среднегодовых значений потока радиоизлучения F10.7 публикуются на сайте Национальных центров экологической информации Национального Департамента по океану и атмосфере США (National Centers for Environmental Information, NOAA в разделе Solar Indices.
Данные представлены в трех видах: obs – наблюденные значения, измеренные солнечным радиотелескопом;
adj – скорректированные значения на изменение расстояния Земля — Солнце
и приведенные к среднему расстоянию;
abs – абсолютные значения – скорректированные значения, умноженные на 0.9.

Источник

Плотность потока радиоизлучения солнца

1-2 млн. К. Поскольку волны разной длины приходят от разных слоев солнечной атмосферы, это позволяет исследовать св-ва хромосферы и короны по их радиоизлучению. В радиодиапазоне размер солнечного диска зависит от длины волны, на к-рой ведется наблюдение: наметровых волнах радиус Солнца больше, чем на сантиметровых, и в обоих случаях он больше радиуса видимого диска.

Зависимость интенсивности основных компонентов
радиоизлучения Солнца (их яркостной температуры)
от частоты (длины волны).

Р.С. включает тепловую и нетепловую составляющие. Тепловое радиоизлучение, обусловленное столкновениями электронов и ионов, движущихся с тепловыми скоростями, определяет нижнюю границу интенсивности радиоизлучения «спокойного» Солнца. Интенсивность радиоизлучения приятно характеризовать величиной яркостной температуры Tb. В случае излучения «спокойного» Солнца на сантиметровых волнах Tb

10 6 К (рис.). Естественно, что для теплового излучения величина Tb совпадает с кинетич. темп-рой слоя, откуда излучение выходит, если этот слой непрозрачен для данного излучения.

Представление об уровне радиоизлучения «спокойного» Солнца явл. идеализацией, в действительности же Солнце никогда не бывает совершенно спокойным: бурные процессы в солнечной атмосфере приводят к появлению локальных областей, радиоизлучение к-рых намного увеличивает наблюдаемую величину интенсивности по сравнению с уровнем «спокойного» Солнца. Образование на поверхности Солнца центров активности (факелов и пятен) сопровождает появлением над ними корональных конденсаций — плотных и горячих, как бы накрывающих активную область. Непосредственно над пятнами горячая корона как бы опускается до высот тыс. км, где напряженность магн. поля тыс. Э. Тогда электроны помимо излучения при соударениях с протонами ( тормозное излучение ) должны излучать и при движении вокруг магн. силовых линий ( магнитотормозное излучение ). Такое излучение обусловливает возникновение над активными областями ярких «радиопятен», к-рые появляются и исчезают примерно в то же время, что и видимые пятна. Поскольку пятна изменяются медленно (дни и недели), то столь же медленно меняется радиоизлучение корональных конденсаций. Пожтому его наз. медленно меняющимся компонентом. Этот компонент проявляется в основном в диапазоне волн от 2 до 50 см. В основном он тоже является тепловым, поскольку излучающие электроны имеют тепловое распределение скоростей ( Максвелла распределение ). Однако на определенной стадии развития активной области в пространстве между пятнами наблюдаеются источники, имеющие, по-видимому, нетепловую природу.

Иногда в области конденсаций наблюдаются внезапные усиления радиоизлучения на тех же волнах — сантиметровые всплески. Их длительность меняется от неск. мин до десятков мин или даже часов. Такие радиовсплески связаны с быстрым нагревом плазмы и ускорением частиц в области солнечной вспышки. Увеличение темп-ры и плотности газа в конденсации может быть причиной генерации сантиметровых всплесков с Tb

Читайте также:  Луна любит землю земля любит солнце по кругу

10 7 -10 8 К. Более интенсивные всплески на сантиметровых волнах обусловлены, по-видимому, циклотронным или плазменным излучением субрелятивистских электронов с энергией от десятков до сотен кэВ во вспышечных магн. арках.

Еще выше над корональными конденсациями также наблюдается усиленное радиоизлучение, но уже на метровых волнах ( м) — т.н. шумовые бури; они могут наблюдаться в течение чаосв и даже дней. Здесь много всплесков длительностью ок. 1 с (радиовсплески I типа) в узких интервалах частот. Это радиоизлучение связано с плазменной турбулентностью , к-рая возбуждается в короне над развивающимися активными областями, содержащими крупные пятна.

Выбросы быстрых электронов и др. заряженных частиц из области хромосферной вспышки вызывают ряд эффектов в радиизлучении активного Солнца. Самые обычные из них — радиовсплески III типа. Их характерной особенностью явл. то, что частота радиоизлучения меняется со временем, причем в каждый момент времени оно появляется сразу на двух частотах (гармониках), относящихся как 2:1. Всплеск начинается на частоте ок. 500 МГц ( см), а затем частота его обеих гармоник быстро уменьшается, примерно на 20 МГц в 1 с. Весь всплеск длится ок. 10 с. Радиовсплески III типа создаются потоком частиц, выброшенным вспышкой и движущимся через корону со скоростью \approx 0,3 с. Поток возбуждает колебания плазмы (плазменные волны) на частоте, к-рая определяется электронной плотностью в том месте короны, где поток в данный момент находится. А поскольку электронная плотность уменьшается при удалении от поверхности Солнца, то движение потока сопровождаетсяпостепенным уменьшением частоты плазменных волн. Часть энергии этих волн может превращаться в эл.-магн. волны с той же или удвоенной частотой, к-рые и регистрируются на Земле в виде радиовсплесков III типа с двумя гармониками. Как показали наблюдения на КА, потоки электронов, распространяясь в межпланетном пространстве, генерируют радиовсплески III типа вплоть до частот 30 кГц.

Вслед за радиовсплесками III типа в 10% случаев наблюдается радиоизлучение в широком интервале частот с максимумом интенсивности на частоте

100 МГц ( м). Это излучение наз. радиовсплесками V типа, всплески длятся ок. 1-3 мин. По-видимому, они также обусловлены генерацией плазменных волн.

При очень сильных вспышках на Солнце возникают радиовсплески II типа тоже с меняющейся частотой. Их длительность примерно 5-30 мин, а диапазон частот 200-30 МГц. Порождается всплеск ударной волной , движущейся со скоростью v

10 8 см/с. Ударная волна возникает в результате расширения газа при сильной вспышке. На фронте этой волны образуются плазменные волны. Затем они, также как и в случае радиовсплесков III типа, частично переходят в эл.-магн. волны. Сходство радиовсплесков II и III типов подчеркивается и тем, что для всплесков II типа тоже характерно излучение на двух гармониках. При распространении в межпланетном пространстве вспышечная ударная волна продолжает генерировать радиовсплеск II типа на волнах гектометрового и километрового диапазонов.

Когда сильная ударная волна достигает верхней части короны, появляется непрерывное радиоизлучение в широком диапазоне частот — радиоизлучение IV типа. Оно похоже на радиовсплески V типа, но отличается от последних большей длительностью (иногда до неск. ч). Радиоизлучение IV типа генерируется субрелятивистскими электронами в плотных облаках плазмы с собственным магн. полем, к-рые выносятся в верхние слои короны. Обычно источники радиоизлучения IV типа поднимаются в короне со скоростью

неск. сотен км/с и прослеживаются до высот солнечных радиусов над фотосферой. Вспышки, с к-рыми связаны интенсивные сантиметровые всплески и радиоизлучение II и IV типов на метровых волнах, часто сопровождаются геофизич. эффектами — повышением интенсивности потоков протонов в околоземном космич. пространстве, прекращением радиосвязи на коротких волнах через полярные области, геомагнитными бурями и т.д. Радиоизлучение в широком диапазоне частот может быть использовано для краткосрочного прогнозирования этих эффектов.

Читайте также:  Луна огромная как солнце

Практически все указанные типы всплесков имеют разнообразную тонкую структуру. Перечисленными типами всплесков не ограничивается радиоизлучение Солнца, однако описанные выше компоненты явл. основными.

Лит.:
Каплан С.А., Элементарная радиоастрономия, М., 1966; Железняков В.В., Радиоизлучение Солнца и планет, М., 1964; Каплан С.А., Пикельнер С.Б., Цытович В.Н., Физика плазмы солнечной атмосферы, М., 1977; Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, пер. с англ., М., 1980.

Источник

Плотность потока радиоизлучения солнца

Электромагнитное излучение Солнца перекрывает большой диапазон длин волн: от нескольких километров до милиметров (радиоизлучение),
оптическое излучение, ультрафиолетовое (UV),
тепловое рентгеновское излучение (SXR) с энергией фотонов 100 МэВ (в крупных вспышках)) (1 МэВ = 0,001нм 100МэВ = 0,00002нм).

Электромагнитное излучение существует и в спокойных условиях, а во время вспышечной активности увеличивается многократно.

Радиоизлучение Солнца

Радиоизлучение Солнца в сантиметровом — декаметровом диапазоне наблюдается как в спокойное, так и в возмущенное время. BR> Частоты всплесков радиоизлучения вспышек соответствующие дециметровому и декаметровому и километровому диапазонам могут возникать лишь высоко в короне или в солнечном ветре, микроволновые и миллиметровые всплески возникают в нижней короне. Радиоизлучение, ассоциированное с вспышками на Солнце, создается при возникновении турбулентности и нетепловых движений высокотемпературной плазмы, а также при движении энергичных электронов в магнитных полях. Вспышечное радиоизлучение очень разнообразно, имеет всплески различной длительности и амплитуды со сложным частотным спектром. Вызделяется на следующие типы радиоизлучений:


Тип I Шумовая буря, состоящая из большого числа коротких узкополосных всплесков в метровом диапазоне (300 — 50 Мгц). ( см. подробнее ниже)

Тип II . Узкополосное излучение, которое начинается в метровом диапазоне (300 Мгц) и медленно, десятки минут, сдвигается в декаметровый диапазон (10 Мгц). Длительность всплесков II типа порядка 2-10 мин, иногда до 20-30 мин. Эти всплески появляются только после мощных хромосферных вспышек и ассоциируются с распространением ударной волны в короне и солнечном ветре. Обычно считают, что эти всплески генерированы потоками электронов, ускоренных на фронте ударной волны.

Тип III . Узкополосные всплески, быстро, за секунды, проскакивают от дециметрового в декаметровый диапазон (500 — 0.5 Мгц). Они часто наблюдаются в виде серий и приурочены к процессам в активных областях на Солнце.
Cоздаются узконаправленным потоком (пучком) электронов, движущихся в короне. Частота всплеска уменьшается по мере движения пучка в область меньшей корональной плотности. Радиовсплески III типа тесно связаны с выходом электронов на открытые силовые линии и убеганием их в межпланетное пространство. Иногда наблюдают всплески U- и J- типов, названных так за форму их изображений на динамических спектрах. В этих случаях пучки электронов, генерирующие всплески, движутся вдоль магнитной вспышечной петли.

Тип IV . Гладкий континуум широкополосных всплесков в метровом диапазоне (300-30 Мгц), начинающихся через 10-20 минут после максимума некоторых сильных вспышек и продолжающихся иногда несколько часов.
Полагают, что длительные всплески возникают, если осуществляется захват быстрых электронов в стабильные магнитные ловушки, которые могут быть либо неподвижными, либо перемещаться с небольшой скоростью, При этом считается, что механизм излучения всплесков IV типа синхротронный, т.е. предполагают захват электронов с энергией не менее нескольких сот кэВ.

Тип V .Всплеск V типа часто возникает вместе с всплесками III типа, немного запаздывая по отношении к ним. Длительность всплесков V типа достигает минут, в то время как длительность всплесков III типа (в том же интервале частот) — всего нескольких секунд, а иногда и долей секунд.
Всплеск V типа объясняется захватом части ускоренного пучка электронов в арку магнитного поля и удержанием в магнитной ловушке.

Шумовой бурей называют повышенное (фон) флуктуирующее (всплески) радиоизлучение продолжительностью от нескольких часов до двух недель.

Радиоволны выходят с уровня, где частота волны становится меньше ленгмюровской. Поэтому в короне, где формируется корпускулярный поток, генерируются излучение метрового диапазона волн.
Чаще всего на этих волнах наблюдаются шумовые бури – повышенное сильно флуктуирующее радиоизлучение.
Яркостная температура в миллиарды градусов свидетельствует о нетепловом происхождении шумовых бурь. Следовательно, они являются индикаторам либо непрерывного ускорения заряженных частиц, либо постоянного существоваания ударных волн.
По мнению Ю.Ф.Юровского, общепринятая гипотеза образования ШБ из кратковременных всплесков I типа противоречит наблюдениям. Полученные им факты свидетельствуют в пользу гипотезы образования всплескового компонента шумовых бурь в результате рассеяния излучения точечного источника квазипостоянного уровня на неоднородностях короны. (см. подробнее PDF-презентацию Ю.Ф. Юровского на конференции КРАО 2007г.)

Читайте также:  Феодосия время восхода солнца

Микроволновое излучение.Микроволновое (Rμ-излучение) на частотах > 109 Гц обычно продолжается столько времени, сколько длится вспышка в жестком рентгеновском излучении, и хорошо с ним коррелирует. Возможные механизмы излучения этих всплесков: 1) излучение нагретого до высоких температур газа в области вспышки; 2) излучение быстрых электронов, движущихся в магнитных полях; 3) возбуждение излучения при взаимодействии электронов с плазменной турбулентностью, развившейся во вспышечной арке.
Мягкое рентгеновское излучение ( X-ray) Солнца разделяется на классы по пиковой мощности излучения Р , измеряемой на Земле в диапазоне 1 — 8 Ангстрем :


Класс В Р меньше 10.0E-06 Вт/М2

Класс C . 10.0E-06 — 10.0E-05 Вт/М2

Класс M . 10.0E-05 — 10.0E-04 Вт/М2

Класс X . P больше 10.0E-04 Вт/М2

Жесткое рентгеновское и гамма излучение

Энергичные электроны c энергиями >30 кэВ появляются во вспышках в результате ускорения. Взаимодействуя с окружающим веществом, они теряют свою энергию, возбуждая при этом тормозным рентгеновское излучение. Дойдя до хромосферы, где n = 10 11 — 10 12 см -3 , электроны быстро за время

0.1-2 с. теряют всю свою энергию; при этом энергия излучённых квантов лежит в широком интервалеб от энергии электронов и ниже.Поведение рентгеновского излучения отражает временные и энергетические характеристики ускорительного механизма. Зависимость от времени интенсивности жесткого рентгеновского излучения (кривые светимости) в интервале энергий 20-1000 кэВ имеет сложную структуру. Длительность рентгеновских всплесков меняется от нескольких секунд до десятков минут.
Частицы ускоряются цугами импульсов. Длительность цуга составляет 1-4с. Внутри каждого цуга можно видеть цепочку отдельных коротких импульсов, длящихся десятки микросекунд.
Высота места ускорения частиц, определённая по совокупности экспериментальных фактов, может быть (6 — 10)*10 9 см над уровнем фотосферы в импульсных событиях и достигать значений (3 — 6)*10 10 см — в длительных вспышках.
Форма энергетического спектра рентгеновского всплеска — распределение числа фотонов от их энергии связана с энергетическим спектром электронов. Обычно форму спектра во всплесках аппроксимируют степенным законом dJ/dEx = Eх -V в интервале энергий 20-300 кэВ. Показатели спектров лежат в интервале значений V от 5 (мягкие спектры) до 2,5 (жесткие спектры). Для событий с большой амплитудой наиболее вероятное значение V= 3,8.

Гамма излучение Протоны (ионы) с энергиями >10-30 МэВб альфа-частицы и тяжелые ядра взаимодействуют с веществом солнечной атмосферы, теряют свою энергию, возбуждая излучение в узких гамма линиях возникает вследствие ядерных реакций. Область энергии фотонов этих гамма линий лежит в интервале энергий 0.15- 17 МэВ.
Наиболее интенсивные линии возникают при переходе из возбужденных состояний ядер 12 С и имеют энергию 4,438 МэВ и ядер l6 О с энергией 6,129 МэВ. Наиболее эффективны для возбуждения этих линий протоны с энергией Ер=10 — 30 МэВ. Время жизни возбужденных состояний t=10-12с или меньше, поэтому линии излучаются немедленно без видимого запаздывания и носят название прямых линий.
К настоящему времени было идентифицировано 17 таких относительно узких линий. см. подробнее в обзоре Р.Т. Сотниковой Солнце в рентгеновских лучах

Более подробную информацию по данному вопросу можно найти в разделах СиЗиФа
ОБЗОРЫ и СТАТЬИ, а также на страницах учебника.
Специально вопросам солнечной активности посвящен богато иллюстрированный раздел проекта Э.В. Кононовича ЖИЗНЬ ЗЕМЛИ В АТМОСФЕРЕ СОЛНЦА

Также смотри родственные разделы справочника:

Источник

Adblock
detector