С олнце составляет 99,98% всей энергии нашей планеты (остальная энергия — геотермальная). Солнце состоит из водорода (71%), гелия (27%) и твердой материи (2%). Температура вблизи ядра приблизительно 16 000 000 градусов, а на его поверхности-фотосфере — около 5770 К. Мощность энергии, излучаемой Солнцем, составляет
63 МВт с каждого квадратного метра его поверхности, всего около 3,72 х 10 20 МВт.
Е диницей измерения потока солнечной энергии в системе СИ является ватт на квадратный метр (Вт/м 2 ). При среднем расстоянии от Земли до Солнца — 150 000 000 км — плотность энергии солнечного излучения, которое достигает атмосферы Земли, составляет в среднем 1,367 КВт/м 2 . Эта величина называется солнечной постоянной. Различные процессы внутри Солнца и на его поверхности (солнечные пятна и вспышки) приводят к флуктуациям этой величины, но они не превышают 0,1%.
Р асстояние от Земли до Солнца изменяется из-за эллиптичности его орбиты Земли, поэтому солнечное излучение в верхней границе атмосферы на 6,6% больше 4 января (когда Земля ближе всего к Солнцу, в перигелии), чем 4 июля (когда Земля наиболее удалена от Солнца, в афелии). Эти даты не совпадают с датами зимнего и летнего солнцестояния потому, что ось вращения Земли наклонена к плоскости эклиптики на 23,5 о .
И з-за большого расстояния между Солнцем и Землей солнечное излучение, которое достигает верхней границы атмосферы, падает в виде почти параллельных лучей. Это излучение включает в себя ультрафиолетовое излучение (УФ), видимый свет и ближнее инфракрасное излучение (БИК). Максимальная интенсивность излучения приходится на диапазон видимого спектра — излучение с длиной волны от 400 до 800 нм. Интенсивность ультрафиолетового и инфракрасного излучения, приходящего от Солнца, очень мала, однако, когда Земля нагревается под действием солнечного излучения, она излучает ближнее и дальнее ИК излучение, которое, в свою очередь, поглощается и отражается газами, частицами и облаками в атмосфере.
П ри прохождении через атмосферу часть солнечного излучения достигает поверхности Земли, а часть рассеивается молекулами газов, аэрозольными частицами, каплями воды и кристаллами льда. Молекулы газов и аэрозоли отвечают за большую часть поглощения излучения. Рассеивание солнечного излучения на каплях воды и кристаллах льда происходит во всем спектральном диапазоне. Молекулы же в основном рассеивают излучение коротких длин волн, а аэрозоли — более длинных.
Рис. 2. Участки спектра излучения. Синим цветом обозначено длинноволновое УФ-излучение, желтым — средневолновое УФ-излучение, белым — видимый свет, кремовым — ближнее инфракрасное излучение и розовым — дальнее инфракрасное излучение. Синяя линия показывает солнечное излучение на земной поверхности, черная — чувствительность человеческого глаза, зеленая — спектральную чувствительность типичного фотоэлемента, красная — чувствительность пиранометра со стеклянным куполом и розовая — чувствительность пиргеометра. Для сравнения все приведено к условному максимуму 1,0.
Э ти процессы в значительной степени влияют на спектр излучения, которое достигает земной поверхности. Когда Солнце находится прямо над головой, оптическая масса атмосферы является минимальной и по определению имеет для этой местности атмосферную массу, равную 1,0. Когда Солнце опускается к горизонту, оптическая масс атмосферы увеличивается приблизительно в 11 раз и ее влияние на поглощение и рассеивание солнечного излучения становится значительно больше.
Н екоторые из этих процессов легко наблюдать. Молекулы атмосферы намного сильнее рассеивают короткие иволны, чем более длинные — рэлеевское рассеивание. Поэтому, когда Солнце находится высоко, небо выглядит синим. Когда же Солнце находится вблизи горизонта, короткие волны, проходя через толстый слой атмосферы, испытывают полное рассеивание, и небо по утрам и вечерам выглядит красным.
В безоблачный день поток солнечной энергии, достигающий земной поверхности в местный полдень, обычно находится в интервале от 700 до 1300 Вт/м 2 в зависимости от широты, долготы, высоты над уровнем моря и времени года.
Н аблюдения за солнечным излучением на земной поверхности ведут в двух диапазонах длин волн: коротковолновом излучении с длиной волны от 300 до 4000 нм и длинноволновом — от 4500 нм (4,5 мкм) до 40 мкм. Коротковолновое излучение включает ультрафиолетовое, видимое, и ближнее, инфракрасное излучение.
Ч асть солнечного излучения, которая достигает земной поверхности, отражается от нее, а другая часть поглощается. Снег и лед имеют высокую отражательную способность (альбедо), темные и/или неровные поверхности — более низкую. Часть излучения, которая поглощается земной поверхносьтю, излучается обратно в атмосферу в ближнем (инфракрасном) диапазоне. Углекислый газ (СО2), метан (СН4) и водяной пар (Н2О) в атмосфере способны поглощать это излучение, нагревая, в свою очередь, земную атмосферу. Это — так называемый «парниковый эффект». В целом же существует равновесие: Земля получает столько же солнечного излучения, сколько излучает обратно в Космос. Иначе Земля нагревалась бы или остывала.
Источник
Солнечная энергия. Цифры и факты
Основные характеристики солнечного света
Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).
«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .
Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.
Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.
Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .
Солнечная мощность, усредненная за весь день: Wattsaverag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день – 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.
Типовые характеристики фотоэлектрических систем
Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.
Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.
Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).
Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.
Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.
Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.
Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 – КПД преобразователя и потери в проводах.
В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24–35 для CSi и $17–24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.
Краткая информация о Солнце
Диаметр: 1,392,000 км;
Масса: 1,989,100 × 10 24 кг;
Температура на поверхности:
5,700 °С;
Среднее расстояние от Земли до Солнца: 150 млн. км;
Состав по массе: 74% водород, 25% гелий, 1% другие элементы;
Яркость (общее количество энергии, излучаемой во всех направлениях): 3.85 × 10 26 Вт (
385 млрд. МВт);
Плотность мощности излучения на поверхности Солнца: 63,300 кВт на квадратный метр.
Перевод: Андрей Гаврилюк по заказу РадиоЛоцман
Источник
Характеристики солнечного излучения
Плотность потока солнечного излучения, падающего на площадку, перпендикулярную этому потоку и расположенную над атмосферой на расстоянии 150 млн. км от Солнца, равна солнечной постоянной G0=1,353 кВт/м 2 . Это — так называемое солнечное космическое излучение.
Солнечное излучение обусловлено ядерными реакциями в ядре Солнца, где температура достигает 10 млн.К. Внешние неактивные слои, нагретые до 5800°К, изменяют спектр, и к верхней границе атмосферы поступает излучение в диапазоне 0,3…2,5 микрон.
Солнечный спектр состоит из трёх участков: (1) ультрафиолетовое излучение (с длиной волны до 0,4 микрон) – составляет 9% интенсивности, (2) видимое излучение (0,4…0,7 микрон) – 45% интенсивности и (3) инфракрасное излучение (более 0,7 микрон) – 46% интенсивности.
Часть энергии солнечного излучения доходит до Земли в виде прямых солнечных лучей. Другая часть, достигая атмосферы, рассеивается облаками и пылью и доходит до поверхности Земли в виде рассеянного излучения. Первую часть потока в отличии от второй можно сфокусировать и в таком виде использовать в технических устройствах. Отношение интенсивности направленного потока к полной интенсивности излучения меняется от 0,9 в ясный день до нуля в пасмурный день.
Максимальная плотность направленного солнечного излучения на 1 м 2 поверхности Земли – около 1 кВт/м 2 в диапазоне волн 0,3…2,5 микрон. Это – коротковолновое излучение и оно включает видимый спектр. В зависимости от времени суток, места, погоды плотность излучения меняется в десятки раз. Эта тепловая энергия может быть использована с помощью технических устройств. Плотность потока энергии излучения, связывающая атмосферу с поверхностью земли также около 1 кВт/м 2 , но уже в диапазоне длинных волн 5…25 микрон.
Полная энергия солнечного излучения, которая приходится на единицу поверхности за день, представляет собой суточную облучённость. Величина суточной облучённости (Н) зависит от широты местности и времени года. В высоких широтах сезонные изменения особенно велики из-за меняющейся продолжительности дня, меняющейся ориентации приёмной площадки (горизонтальной плоскости), изменяющегося поглощения в атмосфере.
Сезонные изменения суточной облучённости горизонтальной приёмной площадки в ясный день на разных широтах – представлены на графике, рис.2.1.1. Летом она составляет 25…26 МДж/м в день или 7 кВт·ч/м 2 в день во всех широтах, зимой – в высоких широтах она намного меньше из-за более короткого дня, косого падения лучей и большего ослабления атмосферой. Расстояние, пройденное прямыми солнечными лучами через атмосферу, зависит от угла падения (зенитного угла) и высоты над уровнем моря. При этом важно не только само расстояние, а взаимодействие излучения с атмосферными газами и парами. Увеличение длины пути при наклонном падении луча по сравнению с путём при нормальном падении называют оптической массой. Облученность горизонтальной площадки в течение суток летом и зимой характеризуется рис.2.1.2.
Прохождение солнечного коротковолнового излучения через атмосферу сопровождается: (1) поглощением, т.е. переходом энергии излучения в тепло, с последующим излучением света большей длины волны, (2) рассеянием, т.е. изменением направления распространения света в зависимости от длины волны, (3) отражением, которое не зависит от длины волны.
Прохождение в атмосфере различно для разных участков спектра солнечного и атмосферного излучения. Оно приводит к повышению температуры.
Коротковолновая ультрафиолетовая область (до 0,3 микрон) почти полностью отсутствует на уровне моря, так как поглощается кислородом О2, О3, О и азотом N2.
Коротковолновая ультрафиолетовая область (0,3…0,4 микрон)- частично проходит.
Видимый диапазон (0,4…0,5 микрон) почти полностью проходит через чистую (не загрязнённую) атмосферу. Это почти половина потока солнечного излучения.
Ближняя инфракрасная область (0,7…2,5 микрон) – почти половина солнечного космического излучения – в значительной степени (на 20%) поглощается в атмосфере в основном парами воды и углекислого газа СО2.
Инфракрасный диапазон (более 12 микрон) – для него атмосфера
Рис.2.1.1. Суточная облученность в зависимости от широты местности и времени года.
Рис.2.1.2. Облученность горизонтальной площадки на широте
54 градуса в течение суток
Отражённое коротковолновое излучение возвращается в космическое пространство. Это 30% солнечного космического излучения. Большую часть отражают облака, меньшую снег и лёд на поверхности земли. Плотность оставшегося потока коротковолнового излучения и составляет около 1 кВт/м 2 .
Измерения солнечной энергии необходимы для расчётов эффективного использования солнечных установок. Для измерения используются пиргелиометры, солариметр и другие приборы. Эталонный пиргелиометр– служит для измерения направленного излучения путём сравнения с нагревом поверхности электрическим током; солариметри солнечные элементы – для измерения суммарного излучения; актинометр – для измерения прямого излучения. Для определения количества солнечных часов применяются самописцы. Обычные визуальные наблюдения невооружённым глазом и фотографирование со спутников позволяют оценить облачность.
Собирающий приёмник должен быть расположен прямо по направлению потока солнечного излучения. Оптимальное расположение фиксированного плоского приёмника определяется из условия получения максимума суммарной (интегральной) облучённости за день, месяц, год:
где облучённость прямыми солнечными лучами площадки, перпендикулярной прямым лучам, кВт/м 2 , — угол между направлением потока излучения и нормалью к поверхности приёмника,
облучённость рассеянным облучением, кВт/м 2 .
Иногда приёмник располагают по направлению к экватору, иногда- ориентируют в зависимости от того, когда нужно получить больший поток энергии– утром или днём.
Ориентировочные суточные изменения облучённости горизонтальной поверхности в ясные дни в различные времена года для Беларуси (54 градуса северной широты) представлены на графике, рис.2.1.2.
Максимальная облученность горизонтальной поверхности или плотность направленного солнечного излучения летом составляет
0,8 кВт/м 2 , зимой – 0,2 кВт/м 2 . В тропиках максимальная облученность около 0.9 кВт/м 2 круглый год.
Величина суточной облучённости может быть определена как
- склонение, или угол между направлением от Солнца и экваториальной плоскостью;
В северном полушарии 21 июня =23,5°, 21 декабря = -23,5°.
Наибольшее число солнечных часов в году в восточной Сахаре– 4300 (97% возможных), в Беларуси- 2000…2300 (50% возможных).
Доля приходящего солнечного излучения, которое может быть сфокусировано на приёмнике зависит от облачности и запылённости атмосферы и от угла наклона приёмника.
Индекс ясности Кт – это отношение лучистой энергии, пришедшей на горизонтальную поверхность за день к энергии пришедшей на параллельную ей поверхность, расположенную вне атмосферы. Для самого ясного дня Кт»0,8. Для таких дней доля рассеянной составляющей излучения равна 0,2; она увеличивается до 1 в пасмурные дни, когда Кт=0. В солнечные дни при небольшой облачности и при значительном количестве аэрозолей в атмосфере рассеянная составляющая равна 0,5.
Фокусирующие системы плохо работают в условиях сильной облачности. Однако, системы, следящие за солнцем, могут собирать большую часть потока, идущую по нормали к поверхности.
Максимум облучённости приёмника зависит от широты расположения, угла наклона приёмника и времени года. Так для местности, расположенной на 45° северной широты при Кт»0,5 , коэффициенте отражения земли 0,2 средняя облучённость вертикальной поверхности мало изменяется от времени года и составляет 8…12МДж/ м или 2,2…3,3 кВт·ч/м в день. Средняя облучённость горизонтальной поверхности для этой широты изменяется в более широких пределах от 5 МДж/ м в декабре до 20 МДж/ м в день в июне. Этого может быть достаточно для создания солнечных электростанций. (45°северной широты – это Крым, Север Италии, Центральная Франция).