Особенности движения планет вокруг Солнца
Движение планет вокруг Солнца задает бег карусели нашей Солнечной системы. А скорость и направление вращения во многом помогли успешному появлению и развитию жизни на Земле. Однако в течение многих столетий на нашей планете царствовала геоцентрическая теория, утверждавшая, что Солнце вращается вокруг Земли. Польский ученый Николай Коперник доказал несостоятельность этой доктрины, хотя и пострадал от своих революционных для того времени идей.
Сегодня нам вовсе не нужно оспаривать церковные догматы, ведь мы прекрасно знаем, что именно вокруг Солнца вращаются все остальные планеты нашей системы. Но как именно они движутся? Почему движение нашей планеты позволяет ей поддерживать равномерную температуру, в то время как на гигантах Солнечной системы градусник буквально зашкаливает то в плюс, то в минус? Что заставляет планеты двигаться по таким разнообразным орбитам?
Открытие движения планет вокруг Солнца как историческое событие
Первый научный трактат, в котором описывалось расположение планет, принадлежал перу древнегреческого астронома Птолемея. В своем труде «Великое математическое построение по астрономии» он высказал предположение, что все небесные тела движутся по кругу, однако он был уверен, что в центре находится Земля, а Солнце, Луна и остальные планеты вращаются вокруг нее. Это заблуждение долгое время воспринималось во всем мире как единственная верная теория.
Переворот в представлениях о строении Вселенной совершил польский астроном Николай Коперник. В своей работе «О вращении небесных сфер», которая увидела свет в 1543 году, он представил убедительные доказательства того, что все небесные тела вращаются вокруг Солнца. После этого труда гелиоцентрическая система мира стала общепринятой концепцией, которая не вызывала сомнений в своей справедливости. Коперник вошел в историю как ученый, который доказал движение планет вокруг Солнца.
Датский астроном Тихо Браге после смерти Коперника продолжил его дело. Он был состоятельным человеком и не жалел денег на оборудование для изучения небесных тел. На своем собственном острове он разместил бронзовые круги, на которых фиксировал результаты наблюдений. Впоследствии его наработки использовал немецкий математик Иоганн Кеплер при выведении трех законов, которыми описывается движение планет вокруг Солнца.
Кеплер привел неоспоримые доказательства вращения шести открытых к тому времени планет вокруг Солнца по эллипсам. Эту теорию развивал и английский ученый Исаак Ньютон. Основываясь на выведенном им законе всемирного тяготения, он объяснил приливы и отливы влиянием Луны.
Влияние модели движения планет вокруг Солнца на структуру и состав Солнечной системы
Солнечная система включает несколько элементов:
Солнце
Является центром и основным источником энергии. Благодаря сильнейшей гравитации Солнце обеспечивает постоянное расположение планет и их вращение по своим орбитам.
Планеты земной группы
В астрономии Солнечная система делится на два участка – внутренний и внешний. В первую входят четыре планеты, расположенные ближе остальных к Солнцу: Меркурий, Венера, Земля и Марс. Их объединяет наличие горных пород и металлов и вытекающая из этого высокая плотность. Кроме того, планеты скалистого типа отличаются небольшими размерами и массой по сравнению с другими небесными телами Солнечной системы.
Пояс астероидов, который находится за Марсом
По мнению астрономов, время его образования совпадает с периодом формирования Солнечной системы. Образуют пояс космические обломки разных размеров.
Планеты-гиганты
Внешний участок Солнечной системы – это четыре газовых гиганта: Юпитер, Сатурн, Уран и Нептун. Их общими характеристиками являются огромные размеры и низкая плотность, которая объясняется газовым составом. Эта особенность не мешает им обладать мощной гравитацией и удерживать вокруг себя массу спутников. Так, вокруг Юпитера вращается 63 небесных тела. Планеты-гиганты находятся на значительном удалении от Солнца.
Астероидные кольца
Главное кольцо астероидов расположено между внутренним и внешним участками Солнечной системы, в районе Марса и Юпитера. Второе астероидное кольцо называется пояс Койпера и включает Плутон, который раньше считался планетой, а сейчас относится к карликам и является самым крупным объектом пояса Койпера. На сегодняшний день изучено 10 тысяч астероидов в главном кольце, а всего их, по предположениям астрономов более 300 тысяч.
Кометы
Эти небесные объекты изо льда и пыли находятся за вторым астероидным кольцом, в межзвездном пространстве. Иногда они под воздействием гравитации попадают в Солнечную систему и разрушаются, превращаясь в пар и пыль.
Зарождение Солнечной системы
Ясными летними ночами люди с восхищением смотрят на небо, поражаясь огромному количеству звезд. При этом нам видна лишь малая часть огромного количества небесных тел, составляющих Вселенную. Представить себе ее истинные масштабы очень сложно. Существует мнение, что Вселенная бесконечна, человек может изучать ее только в тех пределах, которые предоставляет современное астрономическое оборудование.
Вселенную составляют галактики – скопления звезд.
Солнечная система входит в галактику Млечный Путь, при этом Солнце является одной из миллиардов других звезд. Каждая звезда – это раскаленный газовый сгусток, обладающий собственными характеристиками: яркостью, температурой, размерами, структурой, которая формируется в результате воздействия небесных тел, вращающихся вокруг.
Астрономы считают, что со времени возникновения Солнечной системы прошло 4,5 миллиарда лет.
Рождение новой звезды – длительный процесс. Газопылевая туманность под действием гравитации сжимается до облака, которое затем начинает вращаться и превращается в диск с сосредоточением основного вещества в центре. В ходе гравитационного коллапса центральное уплотнение уменьшается в размерах, а его температура повышается. Когда она достигает десятков миллионов градусов, запускается термоядерная реакция и рождается звезда.
Температура вокруг нее так высока, что рядом могут существовать исключительно твердые тела, одним из которых стала Земля. На значительном удалении от Солнца, где нет больших температур, сформировались газовые гиганты.
Скорость и направление движения планет вокруг Солнца
На протяжении почти 5 млрд лет своего существования Солнце движется по своей галактической орбите. Скорость его перемещения составляет 270 км/с, а полный оборот вокруг центра галактики занимает 226 млн лет. Это значит, что последний раз Солнце находилось на том же месте, что и сейчас, в эпоху динозавров.
Для отслеживания перемещения Солнца используются различные системы отсчета, в том числе связанные с ближайшими звездами. Астрономы полагают, что Солнечная система движется в сторону созвездия Геркулеса с запада на восток по большому кругу небесной сферы – эклиптике. Полный оборот занимает один год.
Одновременно Солнце вращается вокруг собственной оси – один оборот за 22,14 года. Кроме того, как и остальные планеты Солнечной системы, наша звезда движется вокруг общего центра масс.
Солнечную систему составляют восемь планет. До 2006 года девятой считался Плутон, но сейчас он относится к карликам. Каждая планета вращается вокруг своей оси и движется по собственной орбите. Находясь на разных расстояниях от Солнца, все они перемещаются в одном направлении.
Рассмотрим все планеты по мере удаления от светила:
Меркурий – самая маленькая и расположенная ближе всех к Солнцу планета совершает оборот вокруг него за 88 земных суток
Венера – по массе и размерам близка к Земле, однако средняя температура составляет 462 градуса по Цельсию. Год на Венере равен дню: вокруг Солнца она совершает оборот за 224,7 земных суток, а вокруг своей оси – за 223
Земля – оборот вокруг своей оси совершает за 24 часа, вокруг главного светила – за 365 суток
Марс – оборачивается вокруг Солнца за такой же период, что и Земля – 24 часа 37 минут
Юпитер – планета-гигант, поэтому вокруг своей оси делает оборот за 10 часов, при этом ему требуется 10 земных лет, чтобы совершить полный круг по орбите
Сатурн – здесь сутки длятся 10,7 часа, а год – 29,5 земных лет
Уран – оборот вокруг Солнца занимает 84 земных года, или 30 687 дня
Нептун – совершает полный круг по орбите за 164,79 земного года, вокруг своей оси – около 16 часов
Закономерность проста: с удалением от Солнца снижается скорость движения планеты и увеличивается путь, который ей предстоит пройти. Из этого следует, что скорость движения планет Солнечной системы наиболее высока около главного светила и снижается к окраинам. До изменения классификации небесных тел крайней планетой считался Плутон, который движется со скоростью 4,67 км/с.
На скорость перемещения планеты влияет ее конкретное нахождение на той или иной точке орбиты. Самая удаленная точка от Солнца на эллиптической траектории называется перигелий, а самая близкая к нему – афелий. В перигелии линейная скорость движения выше, чем в афелии. Это значит, что планета перемещается по орбите то быстрее, то медленнее.
Период движения Земли и планет вокруг Солнца
Главный пояс астероидов, расположенный в области Марса и Юпитера, тоже перемещается вокруг Солнца. Период обращения составляет от 3,5 до 6 земных лет, направление совпадает с траекторией движения планет.
Законы гравитации одинаковы для всех небесных тел, в том числе для пояса Койпера – второго астероидного кольца, состоящего из карликовых планет и расположенного на краю Солнечной системы. Облако Оорта представляет собой миллиарды ледяных тел, которые также вращаются вокруг главного светила, делая полный оборот за 200 лет. Дальше этих скоплений астероидов действие гравитации не распространяется, здесь проходит своеобразная граница Солнечной системы.
Источник
Период обращения планет вокруг солнца как называется
Планеты Солнечной системы обращаются вокруг Солнца по эллиптическим орбитам (см.законы Кеплера) и делятся на две группы. Планеты, которые расположены ближе к Солнцу, чем Земля, называются нижними. Это Меркурий и Венера. Планеты, которые расположены дальше от Солнца, чем Земля, называются верхними. Это Марс, Юпитер, Сатурн, Уран, Нептун и Плутон.
Планеты в процессе обращения вокруг Солнца могут располагаться относительно Земли и Солнца произвольным образом. Такое взаимное расположение Земли, Солнца и планеты называется конфигурацией. Некоторые из конфигураций являются выделенными и носят специальные названия (см. рис. 19).
Рис. 19. Конфигурации планет. 1 — орбита верхней планеты, 2 — орбита Земли (З.), 3 — орбита нижней планеты. Конфигурации нижней планеты: в.с. — верхнее соединение, н.с. — нижнее соединение, В.э. — наибольшая восточная элонгация, З.э. — наибольшая западная элонгация. |
Нижняя планета может располагаться на одной линии с Солнцем и Землей: либо между Землей и Солнцем — нижнее соединение, либо за Солнцем — верхнее соединение. В момент нижнего соединения может произойти прохождение планеты по диску Солнца (планета проецируется на диск Солнца). Но из-за того, что орбиты планет не лежат в одной плоскости, такие прохождения случаются не каждое нижнее соединение, а достаточно редко. Конфигурации, при которых планета при наблюдении с Земли находится на максимальном угловом удалении от Солнца (это наиболее благоприятные периоды для наблюдения нижних планет), называются наибольшими элонгациями, западной и восточной.
Верхняя планета также может находиться на одной линии с Землей и Солнцем: за Солнцем — соединение, и по другую сторону от Солнца — противостояние. Противостояние — это самое благоприятное время для наблюдения верхней планеты. Конфигурации, при которых угол между направлениями с Земли на планету и на Солнце равен 90 o , называются квадратурами, западной и восточной.
Промежуток времени между двумя последовательными одноименными конфигурациями планеты называется ее синодическим периодом обращения P, в отличие от истинного периода ее обращения относительно звезд, называемого поэтому сидерическим S. Разница между этими двумя периодами возникает из-за того, что Земля тоже обращается вокруг Солнца с периодом T. Синодический и сидерический периоды связаны между собой:
(26) |
для нижней планеты, и
(27) |
10.2. Законы Кеплера
Законы, по которым планеты обращаются вокруг Солнца, были эмпирически (т.е. из наблюдений) установлены Кеплером, а затем теоретически обоснованы на основе закона всемирного тяготения Ньютона.
Первый закон. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Второй закон. При движении планеты ее радиус-вектор описывает равные площади за равные промежутки времени.
Третий закон. Квадраты сидерических времен обращений планет относятся друг к другу как кубы больших полуосей их орбит (как кубы их средних расстояний от Солнца):
(28) |
Третий закон Кеплера является приближенным, из закона всемирного тяготения был получен уточненный третий закон Кеплера:
(29) |
Третий закон Кеплера выполняется с хорошей точностью только потому, что массы планет много меньше массы Солнца .
Эллипс — это геометрическая фигура (см. рис. 20), у которой есть две главные точки — фокусы F1, F2, и сумма расстояний от любой точки эллипса до каждого из фокусов есть величина постоянная, равная большой оси эллипса. У эллипса есть центр O, расстояние от которого до наиболее удаленной точки эллипса называется большой полуосью a, а расстояние от центра до самой ближайшей точки называется малой полуосью b. Величина, которая характеризует сплюснутость эллипса, называется эксцентриситетом e:
(30) |
Рис. 20. Орбита планеты — эллипс |
Окружность является частным случаем эллипса (e=0).
Расстояние от планеты до Солнца изменяется от наименьшего, равного
(эта точка орбиты называется перигелием) до наибольшего, равного
(эта точка орбиты называется афелием).
10.3. Движение искусственных небесных тел
Движение искусственных небесных тел подчиняется тем же законам, что и естественных. Тем не менее, необходимо отметить ряд особенностей.
Главное — размеры орбит искусственных спутников, как правило, сравнимы с размерами планеты, вокруг которой они обращаются, поэтому часто говорят о высоте спутника над поверхностью планеты (рис.21). При этом надо учитывать, что в фокусе орбиты спутника находится центр планеты.
Рис. 21. Орбита искусственного спутника планеты |
Для искусственных спутников вводят понятие первой и второй космической скорости.
Первая космическая скорость или круговая скорость — это скорость кругового орбитального движения у поверхности планеты на высоте h:
(33) |
Это минимально необходимая скорость, которую необходимо придать космическому аппарату, чтобы он стал искусственным спутником данной планеты. Для Земли у поверхности vк = 7.9 км/сек.
Вторая космическая скорость или параболическая скорость — это скорость, которую необходимо придать космическому аппарату, чтобы он мог покинуть сферу притяжения данной планеты по параболической орбите:
(34) |
Для Земли вторая космическая скорость равна 11.2 км/сек.
Скорость небесного тела в любой точке эллиптической орбиты на расстоянии R от тяготеющего центра может быть рассчитана по формуле:
(35) |
Здесь повсюду см 3 /(г
с 2 ) — это гравитационная постоянная.
4. Может ли случиться прохождение Марса по диску Солнца? Прохождение Меркурия? Прохождение Юпитера?
5. Можно ли увидеть Меркурий вечером на востоке? А Юпитер?
46. Противостояние Марса произошло 19 мая. В каком созвездии он был виден?
Решение: Орбиты всех планет лежат приблизительно в одной плоскости, поэтому планеты двигаются по небесной сфере примерно по эклиптике. В момент противостояния прямые восхождения Марса и Солнца отличаются на 180 o : . Вычислим
на 19 мая. 21 марта оно равно 0 o . В день прямое восхождение Солнца увеличивается примерно на 1 o . С 21 марта по 19 мая прошло 59 дней. Значит,
, а
. На небесной карте можно увидеть, что эклиптика при таком прямом восхождении проходит по созвездиям Весы и Скорпион, значит Марс находился в одном из этих созвездий.
47. (398) Наилучшая вечерняя видимость Венеры (наибольшее ее удаление к востоку от Солнца) была 5 февраля. Когда в следующий раз наступила видимость Венеры в тех же условиях, если ее сидерический период обращения равен 225 d ?
Решение: Наилучшая вечерняя видимость Венеры наступает во время ее восточной элонгации. Следовательно, следующая наилучшая вечерняя видимось наступит во время следующей восточной элонгации. А промежуток времени между двумя последовательными восточными элонгациями равен синодическому периоду обращения Венеры и легко может быть вычислен:
или P=587 d . Значит, следующая вечерняя видимость Венеры в тех же условиях наступит через 587 дней, т.е. 14-15 сентября следующего года.
48. (663) Определить массу Урана в единицах массы Земли, сравнивая движение Луны вокруг Земли с движением спутника Урана — Титанией, обращающегося вокруг него с периодом 8 d .7 на расстоянии 438 000 км. Период обращения Луны вокруг Земли 27 d .3, и среднее расстояние ее от Земли составляет 384 000 км.
Решение: Для решения задачи необходимо воспользоваться третьим уточненным законом Кеплера. Так как для любого тела массой m, обращающегося вокруг другого тела массой на среднем расстоянии a с периодом T:
(36) |
то мы имеем право для любой пары обращающихся друг вокруг друга небесных тел записать равенство:
Принимая за первую пару Уран с Титанией, а за вторую — Землю с Луной, а также пренебрегая массой спутников по сравнению с массой планет получим:
49. Принимая орбиту Луны за окружность и зная орбитальную скорость движения Луны vЛ = 1.02 км/с, определить массу Земли.
Решение: Вспомним формулу для квадрата круговой скорости (35) и подставим среднее расстояние Луны от Земли aЛ (см. предыдущую задачу):
50. Вычислить массу двойной звезды Центавра, у которой период обращения компонентов вокруг общего центра масс T=79 лет, а расстояние между ними 23.5 астрономических единицы (а.е.). Астрономической единицей называется расстояние от Земли до Солнца, равное примерно 150 млн. км.
Решение: Решение этой задачи аналогично решению задачи о массе Урана. Только при определении масс двойных звезд их сравнивают с парой Солнце-Земля и выражают их массу в массах Солнца.
51.(1210) Вычислите линейные скорости космического корабля в перигее и апогее, если над Землей в перигее он пролетает на высоте 227 км над поверхностью океана и большая ось его орбиты составляет 13 900 км. Радиус и масса Земли 6371 км и 6.0 10 27 г.
Решение: Рассчитаем расстояние от спутника до Земли в апогее (наибольшем расстоянии от Земли). Для этого необходимо зная расстояние в перигее (наименьшее расстояние от Земли) вычислить эксцентриситет орбиты спутника по формуле (31) и затем определить искомое расстояние используя формулу (32). Получим ha = 931 км.
Далее воспользуемся формулой (35) для вычисления скорости тела на любом расстоянии от тяготеющего центра и вычислим скорость в перигее и апогее:
52. (393) Синодический период обращения одного из астероидов составляет 3 года. Каков звездный период его обращения около Солнца?
53. (400) Найти среднее суточное движение Меркурия по орбите (величину дуги орбиты, которую он проходит за земные сутки), если синодический период его обращения вокруг Солнца равняется 115.88 суткам.
54. (417) С какой видимой угловой скоростью Венера пересекает диск Солнца? Сколько времени длится ее прохождение по диску Солнца, если оно центральное? Расстояние Венеры от Солнца 0.723 а.е., синодический период обращения 584 дня, угловой диаметр Солнца 32′.
55. (662) Вычислить массу Нептуна относительно массы Земли, зная, что его спутник отстоит от центра планеты на 354 000 км и период его обращения равен 5 суткам 21 часу.
56. (671) Какова должна быть масса Земли (по сравнению с действительной), чтобы Луна обращалась вокруг нее с современным периодом, но на вдвое большем расстоянии?
57. (675) Удержало ли бы Солнце нашу Землю, несущуюся вокруг него со скоростью 29.76 км/сек, если бы масса Солнца внезапно уменьшилась в два раза?
58. (1214) Для целей связи нужны спутники, которые «висят» над одной и той же точкой Земли, так называемые геостационарные спутники. На какой высоте над поверхностью Земли они должны находиться?
59. (1217) Космонавты облетают Луну по круговой орбите на высоте 50 км. На сколько им надо увеличить двигателями скорость своего космического корабля, чтобы вернуться на Землю? Радиус Луны 1738 км, а ее масса составляет 1/81 массы Земли.
Источник