Меню

Парниковые газы энергия солнца

Основные газы, которые приводят к парниковому эффекту

Парниковые газы поглощают отраженную энергию Солнца, делая атмосферу Земли более теплой. Большая часть солнечной энергии достигает поверхности планеты, а часть отражается обратно в космос. Некоторые газы, присутствующие в атмосфере, поглощают отраженную энергию и перенаправляют ее обратно на Землю в виде тепла. Газы, ответственные за это, называются парниковыми газами, поскольку они играют ту же роль, что и прозрачный пластик или стекло, покрывающие теплицу.

Парниковые газы и деятельность человека

Некоторые парниковые газы выделяются естественным путем в результате лесных пожаров, вулканической активности и биологических процессов. Однако, начиная с возникновения промышленной революции на рубеже XIX века, люди выпускали в атмосферу все большее количество парниковых газов. Это увеличение ускорилось с развитием нефтехимической промышленности.

Парниковый эффект

Тепло, отраженное от парниковых газов, производит измеримое потепление поверхности Земли и океанов. Это глобальное изменение климата оказывает широкомасштабное воздействие на лед, океаны, экосистемы и биоразнообразие Земли.

Основные парниковые газы Земли:

Водяной пар

Водяной пар является наиболее сильным и важным из парниковых газов Земли. Количество водяного пара в атмосфере не может быть непосредственно изменено деятельностью человека — оно определяется температурой воздуха. Чем теплее, тем выше скорость испарения воды с поверхности. В результате, увеличенное испарение приводит к большей концентрации водяного пара в нижней атмосфере, способной поглощать инфракрасное излучение и отражать его вниз.

Углекислый газ (CO2)

Углекислый газ является самым важным парниковым газом. Он высвобождается в атмосферу в результате сжигания ископаемого топлива, извержения вулканов, разложения органических веществ и передвижения транспортных средств. Процесс производства цемента приводит к выбросу большого количества углекислого газа. Вспашка земли также вызывает высвобождение большого количества углекислого газа, обычно хранящегося в почве.

Растительная жизнь, которая поглощает СО2 в процессе фотосинтеза, является важным естественным хранилищем углекислого газа. Морская жизнь также может поглощать растворенный в воде CO2.

Метан

Метан (CH4) — второй наиболее важный парниковый газ после двуокиси углерода. Он более сильный, чем CO2, но присутствует в атмосфере в гораздо меньших концентрациях. CH4 может находится в атмосфере в течение более короткого времени, по сравнению с CO2 (время пребывания CH4 составляет примерно 10 лет, по сравнению с сотнями лет для CO2). Природные источники метана включают в себя: водно-болотные угодья; горение биомассы; процессы жизнедеятельности крупного рогатого скота; выращивание риса; добыча, сжигание и переработка нефти или природного газа и др. Основным природным поглотителем метана является сама атмосфера; другим — почва, где метан окисляется бактериями.

Как и в случае с СО2, деятельность человечества увеличивает концентрацию СН4 быстрее, чем метан поглощается естественным образом.

Тропосферный озон

Следующим наиболее значительным парниковым газом является тропосферный озон (O3). Он образуется в результате загрязнения воздуха и его следует отличать от естественного стратосферного О3, который защищает нас от многих разрушительных солнечных лучей. В нижних частях атмосферы озон возникает при разрушении других химических веществ (например, оксидов азота). Этот озон считается парниковым газом, но он недолговечен и хотя способен в значительной степени способствовать потеплению, его последствия обычно локальные, а не глобальные.

Читайте также:  Какая планета больше всех вращается вокруг солнца

Второстепенные парниковые газы

Второстепенными парниковыми газами выступают оксиды азота и фреоны. Они являются потенциально опасными для окружающей среды. Однако в связи с тем, что их концентрации не такие значительные как вышеупомянутых газов, оценка их влияния на климат полностью не изучена.

Оксиды азота

Оксиды азота находятся в атмосфере благодаря естественным биологическим реакциям в почве и воде. Тем не менее большое количество выделяемого оксида азота вносит значительный вклад в глобальное потепление. Основным источником является производство и использование синтетических удобрений в сельскохозяйственной деятельности. Моторные автомобили выделяют оксиды азота при работе на ископаемых видах топлива, таких как бензин или дизельное топливо.

Фреоны

Фреоны представляют собой группу углеводородов с различными видами использования и характеристиками. Хлорфторуглероды широко используются в качестве хладагентов (в кондиционерах и холодильниках), вспенивателей, растворителей и др. Их производство уже запрещено в большинстве стран, но они по-прежнему присутствуют в атмосфере и наносят ущерб озоновому слою. Гидрофторуглероды служат альтернативой более вредным озоноразрушающим веществам, и вносят гораздо меньший вклад в глобальное изменение климата на планете.

Источник

Пароль должен быть не менее 6 символов длиной.

* Поля, обязательные для заполнения.

Энергия солнца как решение проблемы парниковых газов

Энергия солнца как решение проблемы парниковых газов

В России имеются регионы с уровнем инсоляции, превышающим аналогичные показатели в Южной Европе

Об авторе: Юрий Коларж, Андрей Ионов Юрий Евгеньевич Коларж – директор бизнеса Solar Schneider Electric в России и странах СНГ, Андрей Александрович Ионов – кандидат технических наук, директор проектов по направлению «Солнечная энергетика».

Крупнейшая российская солнечная электростанция на Алтае. Фото с сайта www.rusnano.com

Энергопотребление на планете постоянно растет, и в то же время перед человечеством стоит задача сократить выбросы парниковых газов, чтобы предупредить глобальные изменения климата. Поэтому освоение возобновляемых источников энергии (ВИЭ) становится все более необходимым.

Солнечная генерация – одно из самых перспективных и активно развивающихся направлений возобновляемой энергетики. Не случайно солнечные электростанции (СЭС) сегодня создаются на территории около 100 стран (причем по темпам развития лидируют азиатские государства). По данным на декабрь 2013 года, в общей сложности во всем мире уже установлено около 140 ГВт солнечных электростанций.

Солнечная энергия обладает рядом преимуществ по сравнению с другими ВИЭ. Во-первых, СЭС достаточно легко устанавливать и монтировать. Во-вторых, такие электростанции просты в обслуживании, поскольку имеют мало движущихся частей.

Необходимость конкуренции с традиционными источниками энергии и широкое предложение на мировом рынке оборудования способствовало развитию технологий солнечной генерации и их быстрому удешевлению. Постоянное увеличение объемов производства позволяет еще больше снизить себестоимость. В итоге за последние 10 лет стоимость солнечной генерации уже уменьшилась в восемь раз и, по мнению экспертов, продолжит падать. При этом параллельный рост тарифов на электроэнергию способствует достижению паритета стоимости солнечной и традиционной генерации, делая первую еще более привлекательной.

Читайте также:  Чем обработать кожу при ожоге солнцем

Солнечная энергетика – молодая отрасль, эксплуатируемым по всему миру фотоэлектрическим установкам в среднем чуть менее трех лет. Игроки рынка быстро меняются: многие уходят, не выдержав конкуренции. В то же время солнечная энергетика – объект для долгосрочных инвестиций. Чтобы выгодно вложить средства в проект сроком более 20 лет, необходимо выбрать надежного поставщика, обладающего финансовыми ресурсами и передовым отраслевым опытом, способного предложить решения высокой надежности и обеспечить долгосрочную техническую поддержку.

Инвестируя в эту молодую отрасль, важно быть уверенным в эффективности оборудования, экономичности его эксплуатации, в конечном счете это обеспечивает предсказуемые сроки окупаемости и уровень рентабельности. Неграмотный подход к проектированию фотоэлектрических систем может превратить их в абсолютно неэффективные объекты. Здесь нет мелочей: чтобы достичь хороших результатов, важно правильно выбрать местоположение будущей станции, спроектировать систему преобразования электроэнергии и определить тип солнечных панелей. Все эти характеристики варьируются в зависимости от объекта, климатической зоны, широтного пояса.

Солнечная энергетика приходит в Россию

Еще недавно бытовало мнение, что в нашей стране достаточно ископаемого топлива и традиционных электростанций, вырабатывающих дешевую электроэнергию, что позволяет не задумываться об альтернативных источниках в обозримой перспективе. Некоторые утверждали, что Россия северная, несолнечная страна и перспектив у СЭС здесь нет. Однако в последние годы экспертное сообщество меняет свою точку зрения, убеждаясь, что в России есть все предпосылки для развития солнечной генерации.

На самом деле уровень инсоляции в ряде регионов РФ превышает аналогичные показатели в странах Европы, где успешно развивается солнечная энергетика. Кроме того, Россия крайне нуждается в развитии экономически привлекательной и экологически чистой распределенной генерации. Дело в том, что две трети территории страны находятся вне единой энергосистемы. И себестоимость электроэнергии, которую получают жители этих зон (а это около 17 млн человек), очень высока. Например, в Якутии (к слову, это один из самых солнечных регионов страны) стоимость 1 кВт/ч может достигать 100 руб.; электроэнергия вырабатывается зачастую на устаревших, часто выходящих из строя дизель-генераторах, наносящих огромный ущерб окружающей среде, при этом государство вынуждено тратить огромные средства на дотации населению. Для территории с децентрализованным электроснабжением внедрение солнечной генерации – оптимальный способ решить разом множество проблем.

С другой стороны, по-прежнему существуют энергодефицитные регионы, которые сегодня снабжаются за счет энергопрофицитных. Естественно, транспортировка электроэнергии на большое расстояние влечет за собой большие ее потери. Если предполагать, что начнется массовое использование электромобилей, то потребности в энергии и нагрузка на сети станут расти еще быстрее. В то же время дефицитные области можно было бы поддержать за счет включения в региональную энергосистему солнечных электростанций.

Важность развития возобновляемой энергетики сегодня осознают и на государственном уровне. Значимым шагом в развитии ВИЭ стало постановление правительства РФ от 28.05.13, № 449, определившее механизм стимулирования использования ВИЭ на оптовом рынке электрической энергии, что дало толчок строительству солнечных электростанций мощностью от 5 МВт в ряде регионов России. Согласно документу, установлены минимально допустимые показатели локализации производства оборудования для солнечных электростанций. Сегодня в России должно быть выпущено не менее 50% оборудования, а с 2016 года – не менее 70%. К 2020 году при поддержке правительства планируется построить солнечных станций на 1,5 ГВт. Направлением начинает интересоваться все больше частных инвесторов.

Читайте также:  Гигиеническая помада от солнца spf

Энергия солнца для Алтая

В сентябре 2014 года в Республике Алтай была запущена Кош-Агачская солнечная электростанция мощностью 5 МВт – на момент постройки это был крупнейший подобный российский объект. СЭС может обеспечивать стабильное электроснабжение не менее 1тыс. домохозяйств, а на полной мощности покрывать потребности трех соседних муниципальных районов. В первый же месяц эксплуатации станция позволила снизить переток мощности на близлежащие территории до нуля.

Проект реализован «Авелар Солар Технолоджи» – дочерней структурой компании «Хевел» (совместного предприятия ГК «Ренова» и ОАО «Роснано»). По соглашению с «Авелар Солар Технолоджи» компания Schneider Electric поставила ключевые высокотехнологичные компоненты СЭС-инверторы, АСУ ТП и другое оборудование. Инверторы необходимы для преобразования постоянного электрического тока, вырабатываемого солнечными модулями, в переменный ток, поступающий в электросеть.

В соответствии с принятым в 2013 году механизмом стимулирования использования ВИЭ на оптовом рынке электроэнергии и мощности, требовалось обеспечить необходимый уровень локализации производства оборудования в России. Schneider Electric производил сборку, конечное соединение элементов проводки и тестирование инверторов на территории Российской Федерации, что дало дополнительные 12% к степени локализации генерирующего объекта.

Станция в Оренбургской области

В мае 2015 года при участии Schneider Electric запущена в эксплуатацию еще одна солнечная электростанция мощностью 5 МВт в поселке Переволоцкий Оренбургской области. Проект также реализован в соответствии с постановлением правительства РФ № 449. Инвестором и генеральным подрядчиком строительства Переволоцкой СЭС выступили структуры компании «Хевел». В строительство энергообъекта вложено более 500 млн руб., которые будут возвращены за 15 лет при норме доходности на уровне 12–14% годовых.

Установленная мощность объекта генерации соответствует энергопотреблению не менее 1 тыс. частных домохозяйств. СЭС имеет высокую производительность: уровень удельной выработки электроэнергии здесь достигает 1250–1300 кВт/ч в год с каждого киловатта установленной мощности. Ввод электростанции позволит сократить выбросы углекислого газа в атмосферу на 4,5 тыс. т в год.

Солнечные перспективы

Schneider Electric рассчитывает на дальнейшее сотрудничество с компанией «Хевел» и ее дочерними структурами. Реализованные проекты по строительству СЭС можно рассматривать как первый шаг на пути создания целой отрасли солнечной электроэнергетики в России. По мере развития технологий, накопления опыта и увеличения количества объектов их эффективность будет возрастать, а себестоимость снижаться. И в этом смысле долгосрочные цели компаний совпадают. Так, «Авелар Солар Технолоджи» планирует в ближайшие три года построить 254 МВт новой солнечной генерации.

В целом российский рынок электрооборудования для СЭС до 2020 года можно оценить в 15–20 млрд руб. Значительную часть этих средств составят инвестиции в локализацию производства в России при условии выполнения плана строительства 1,5 ГВт солнечной генерации.

Источник

Adblock
detector