Лунная связь 144 Мгц
Автор: Василий Бекетов, UU2JJ
Все статьи на CQHAM.RU
Все статьи категории «VHF, Es, EME, MS»
Все статьи на CQHAM.RU
Все статьи категории «VHF, Es, EME, MS»
Недавно перебирая в гараже старые документы, журналы, нашел черновики статьи «Лунная связь 144 Мгц» бесследно пропавшей в редакции журнала » РАДИО» двадцать один год назад! Тема не потеряла своей актуальности и сегодня, остались те же вопросы и проблемы.
Луна — ближайшее к Земле небесное тело. Её радиус равен 1737 км, масса в 81,3 раза меньше массы Земли, а средняя плотность 3,35 г/куб. см, т.е. в полтора раза меньше плотности Земли. Продолжительность лунных суток составляет 29,5 земных. Среднее расстояние на трассе Земля-Луна-Земля составляет 750 тыс. км, затухание сигнала на этом пути для радиоволн метрового диапазона около 200db, т.е. сигнал ослабляется в десять, в десятой степени раз и идет туда и обратно 2,5 секунды.
Идея использовать Луну – спутник Земли в качестве пассивного ретранслятора пришла давно. Первые отражения радиоволн от поверхности Луны были получены еще в1946 году учеными Венгрии и США, работающими в этом направлении независимо друг от друга. При экспериментах использовались передатчики мощностью 200 КВт, работающие на волне около 2 метров и антенны с коэффициентом усиления 400.
Большие работы в этом направлении были проведены в 1954-57 годах в Горьковском университете. Для опытов использовались волны 10 и 3 см, коэффициент направленного действия антенн на волне 3 см достигал 120 тыс., т.е. энергия концентрировалась в угле 0,5 градуса. В результате этих опытов был измерен коэффициент отражения радиоволн от Луны, который составил примерно 0,25 — и было установлено, что отражение происходит от центральной части видимого диска Луны. Опыты радиолокации Луны дали реальную почву для осуществления идеи использования Луны в качестве пассивного ретранслятора.
Заинтересовались этой идеей и радиолюбители. И вот в июле 1960 года была проведена первая радиолюбительская связь в диапазоне 1296 Мгц между американскими клубными любительскими радиостанциями W6HB и W1BU. В 1964 году была проведена первая радиосвязь в диапазоне 144 Мгц между радиолюбителями OH1NL и W6DNG.
В Советском Союзе первая любительская радиосвязь через Луну была проведена 11 мая 1979 года операторами коллективной радиостанции UK2BAS, в диапазоне 432 Мгц. Их партнером был K2UYH. Позднее 19 января 1981 года радиолюбителем UT5DL была проведена первая радиосвязь в диапазоне 144 Мгц. Его партнером был K1WHS из штата Мэн, имеющий на то время самую большую антенну (24 стрелы по 14 элементов).
20 апреля, того же 1981 года, провел свою первую радиосвязь и автор этой статьи (ex UB5JIN). А дальше пошло – поехало: 6 декабря 1981 года, первая внутрисоюзная радиосвязь (UB5JIN и UA3TCF), 11 января 1982 года — первая радиосвязь с территории СССР на SSB – (UB5JIN и K1WHS), 15 августа 1982 года первая связь с Японией (UB5JIN и JA6DR), 10 октября с Венесуэлой (UB5JIN и YV5ZZ) и так далее…
Сегодня через Луну проводят любительские связи тысячи радиолюбителей всех континентов земного шара в диапазонах 144, 432, 1296, 5600 Мгц. Каждый из диапазонов имеет свои особенности, достоинства и недостатки.
Прием на земле сигналов, отраженных от Луны, встречает большие принципиальные трудности:
Луна движется относительно Земли с большой угловой скоростью, поэтому отраженный сигнал подвержен “Доплеровскому” эффекту, т.е. волна, отраженная от движущегося тела, имеет частоту колебаний отличную от частоты, посланной волны. Эта разница для диапазона 144 Мгц достигает 427 Гц.
Большое влияние на принимаемый сигнал оказывает также эффект “Фарадея”, т.е. вращение вектора поляризации передаваемого сигнала, который выражается в глубоких замираниях сигнала. Для устранения этого эффекта необходимы антенны с круговой поляризацией, которые трудно осуществимы в диапазоне 144 Мгц из конструктивных соображений.
Сильно влияют на прием сигналов метрового диапазона космические шумы, к примеру: минимальная шумовая температура небесной сферы на частоте 136 Мгц в феврале 1982 года составляла 210 градусов Кельвина или 2,35 db в точках минимума и 2750 градусов или 10,2 db в точках максимума.
Много проблем связано также с прозрачностью тропосферы и ионосферы Земли, атмосферными и местными электрическими помехами.
Ориентировочное затухание на трассе Земля-Луна-Земля для разных диапазонов можно выразить таблицей:
Источник
Радиосвязь через Луну
Наверное многие из нас слышали о «лунатиках», которые способны бродить во сне минуя препятствия, при этом не нанося себе травматических последствий. Но речь в данной статье пойдет совсем о другой категории «лунатиков», а именно о группе энтузиастов, которые не жалея своих сил и ресурсов проводят интереснейшие эксперименты в области радиосвязи с помощью нашего естественного спутника Луны, изучая и исследуя все стороны данного процесса.
EME (от англ. «Earth — Moon — Earth» — «Земля — Луна — Земля») — техника радиосвязи на УКВ с использование Луны в качестве отражателя. Идея использовать Луну — спутник Земли в качестве пассивного ретранслятора пришла давно. Первые отражения радиоволн от поверхности Луны были получены еще в 1946 году учеными Венгрии и США, работающими в этом направлении независимо друг от друга. При экспериментах использовались передатчики мощностью 200 КВт, работающие на волне около 2 метров и антенны с коэффициентом усиления 400.
Большие работы в этом направлении были проведены в 1954-57 годах в Горьковском университете. Для опытов использовались волны 10 и 3 см, коэффициент направленного действия антенн на волне 3 см достигал 120 тыс., т.е. энергия концентрировалась в угле 0,5 градуса.
В результате этих опытов был измерен коэффициент отражения радиоволн от Луны, который составил примерно 0,25 — и было установлено, что отражение происходит от центральной части видимого диска Луны. Опыты радиолокации Луны дали реальную почву для осуществления идеи использования Луны в качестве пассивного ретранслятора.
Заинтересовались этой идеей и радиолюбители. И вот в июле 1960 года была проведена первая радиолюбительская связь в диапазоне 1296 Мгц между американскими клубными любительскими радиостанциями W6HB и W1BU. В 1964 году была проведена первая радиосвязь в диапазоне 144 Мгц между радиолюбителями OH1NL и W6DNG.
В Советском Союзе первая любительская радиосвязь через Луну была проведена 11 мая 1979 года операторами коллективной радиостанции UK2BAS, в диапазоне 432 Мгц. Их партнером был K2UYH. Позднее 19 января 1981 года радиолюбителем UT5DL была проведена первая радиосвязь в диапазоне 144 Мгц. Его партнером был K1WHS из штата Мэн, имеющий на то время самую большую антенну (24 стрелы по 14 элементов).
Сегодня через Луну проводят любительские связи тысячи радиолюбителей всех континентов земного шара в диапазонах 144, 432, 1296, 5600 Мгц. Каждый из диапазонов имеет свои особенности, достоинства и недостатки. Для EME применяются довольно сложные антенные устройства — параболические антенны или антенны типа «волновой канал» с большим количеством элементов.
Сущность EME — основные технические аспекты
Если две станции имеют соответствующее оборудование и могут одновременно видеть Луну, они могут провести EME радиосвязь. Однако, для достижения успеха может понадобиться несколько попыток. Сигналы — это очень слабые эхо, отраженные поверхностью Луны. Как правило, они находятся на уровне шумов или даже ниже, время от времени поднимаясь над шумами на короткие периоды. Давайте рассмотрим некоторые технические факторы, влияющие на EME радиосвязь, в частности, для диапазона 2 м.
Поляризация. Поляризация EME-сигналов постоянно меняется, что приводит к полному пропаданию сигнала или к очень глубоким замираниям. Есть два основных поляризационных эффекта:
Пространственная поляризация — это функция геометрии. Поляризация фронта волны EME-сигнала между двумя станциями может быть повернута. Величина поворота зависит от соотношения географических долгот двух станций и положения Луны на небе. Большинство компьютерных программ слежения за Луной вычисляют величину пространственной поляризации и показывают оптимальное время для назначения скедов.
Эффект Фарадея — Магнитное поле Земли вызывает поворот поляризации радиоволны несколько раз, когда сигнал проходит через ионосферу по пути к Луне и обратно. Это приводит к циклическому федингу принимаемого сигнала. На двух метрах период между пиками сигнала (т.е. время поворота на 90 градусов) составляет около 30 минут. Эффект Фарадея в настоящее время не может быть учтен в компьютерных программах.
Вредный эффект пространственной поляризации и вращения Фарадея может быть минимизирован использованием вращающихся линейно поляризованных антенн, вращающаяся вокруг осей X, Y и Z, или, что проще, использованием кросс-поляризованных Yagi, и многие другие. Радиосвязь могут успешно провести и две станции, использующие линейную поляризацию, просто «пережидая» неблагоприятное время или перенеся попытку на другое время, когда комбинация пространственной поляризации и эффекта Фарадея дает благоприятный результат.
Либрационный фединг. Если смотреть с Земли, Луна кажется слегка «качающейся» вперед-назад вокруг своей оси. Это движение называется «либрация». Длина пути, проходимого сигналами, отраженными от различных частей неровной поверхности Луны, все время меняется, что приводит к достаточно быстрому «дрожанию» сигнала в пределах нескольких dB. На двух метрах замирания и увеличения сигнала происходят с периодом около 2-х секунд. Возникновение кратковременного увеличения уровня сигнала может помочь станции с низкой энергетикой провести радиосвязь, которое иначе провести бы не удалось.
Эффект Доплера. Так как Луна движется по отношению к наблюдателю на Земле, возникает доплеровский сдвиг EME-сигнала. На 2-х метрах это приблизительно плюс 350 Гц на восходе Луны, 0 Гц, когда Луна над головой, и минус 350 Гц на заходе Луны. Доплеровский сдвиг увеличивается при увеличении частоты. Этот сдвиг частоты принимаемого сигнала должен учитываться использованием расстройки RIT или отдельного VFO, когда Вы слушаете свое эхо или другую станцию на назначенной частоте. Хорошая практика на 2-х метрах — крутить расстройку в пределах 750 Гц в обе стороны от ожидаемой частоты приема (т.е. частоты, назначенной для скеда +- доплеровский сдвиг), когда слушаете корреспондента. Лучше также при первоначальной настройке на станцию использовать «широкий» фильтр приемника, например, 500 Гц. Когда сигнал обнаружен, фильтр приемника можно заузить до необходимой величины для улучшения соотношения сигнал/шум.
Шум неба (шумовая температура). Луна, двигаясь по своей орбите в течение примерно 28-дневного лунного месяца, проходит перед разнообразными небесными телами, такими как Солнце и другие звезды и планеты, которые излучают радиочастотные шумы. Некоторые источники более шумные, чем другие, но любые дополнительные шумы ухудшают условия связи на трассе EME. Самые маленькие антенные системы 2-х метрового диапазона, используемые для EME, имеют ширину главного лепестка диаграммы направленности по половинной мощности примерно от 30 градусов для одиночной Yagi до 15 градусов для стэка из четырех Yagi. Так как угловой размер Луны при наблюдении с Земли составляет полградуса, антенна «видит» значительную часть шумного неба вокруг Луны. Шум неба, или шумовая температура, измеряется в градусах Кельвина (К). На двух метрах шум неба изменяется от минимум 175 К (редко) до более 3000 К. Чем меньше, тем лучше, и если эта величина более 400 К, станция с низкой энергетикой вряд ли услышит или будет услышана даже станцией с высокой энергетикой. Шумовая температура уменьшается пропорционально увеличению частоты.
Потери на трассе. В течение лунного месяца Луна движется по слегка эллиптической орбите с расстоянием до Земли от около 221500 миль в перигее (ближайшая к Земле точка) до примерно 252700 миль в апогее (наиболее удаленная точка). Эти расстояния приводят к примерно 2.5-секундному запаздыванию EME-эхо. На 2-х метрах затухание сигнала на этом расстоянии около 251.5 dB в перигее и 253.5 dB в апогее, и затухание возрастает с ростом частоты. Разница в 2 dB между перигеем и апогеем является существенным фактором для станции с низкой энергетикой. Таким образом, большинство скедов назначается, когда Луна около перигея.
Деградация. Это «число качества», вычисляемое большинством программ слежения за Луной, которые вычисляют деградацию (DGRD) EME сигнал/шум в dB для данного положения Луны и даты. Сравнивается дополнительный шум неба в направлении на Луну плюс расстояние Земля-Луна по отношению к наименьшему возможному шуму неба и абсолютно наименьшему расстоянию в перигее. В течение месячного лунного цикла этот фактор изменяется в пределах более чем 13 dB на двух метрах. Станция с низкой энергетикой имеет наилучшие шансы провести 2 м EME QSO, когда деградация менее 2.5 dB, и чем меньше, тем лучше.
Склонение. Это положение, измеренное в градусах над/под экватором, при котором Луна появляется на небе. Максимальное положительное (или северное) склонение составляет около +23 градуса. Лучшие условия для работы EME для станций северного полушария, когда склонение наибольшее, так как при этом имеются наибольшие по продолжительности возможные окна для работы между двумя станциями в северном полушарии (например, США-Европа, США-Япония). Кроме того, шум неба обычно меньше при большом склонении. Когда склонение Луны проходит через 0 градусов (прямо над экватором) и становится отрицательным, Луна восходит все дальше и дальше к югу и продолжительность окон для работы станций северного полушария сокращается.
Источник
Луна — естественный спутник Земли. Ее диаметр составляет 3476 км, среднее расстояние от Земли — 384900 км. Угловой диаметр Луны при наблюдении с Земли составляет 33 минуты. Луна движется вокруг Земли в направлении с запада на восток с угловой скоростью 12-13° в сутки, возвращаясь в то же самое положение относительно Земли и Солнца спустя один лунный месяц, что составляет 29,53 средних солнечных суток. Орбита Луны наклонена к плоскости орбиты Земли под углом 5° 9′. В связи с наклоном оси Земли относительно плоскости ее орбиты на 27° 27′
Луна с территории, например, европейской части России видна под углами от 11° до 68°. Точное угловое положение Луны относительно любой точки на Земле приведено в астрономических ежегодниках. Поверхность Луны обладает коэффициентом отражения для радиоволн 0,1. Эффективная отражающая поверхность Луны представляет собой круг диаметром 340 км, который расположен на ближайшей к Земле части поверхности Луны. Луна повернута к Земле одной и той же стороной. Однако из-за явления вибрации мы видим несколько большую чем половина часть поверхности Луны. В результате вибрации положение наиболее эффективно отражающей области на поверхности Луны постоянно меняется, что приводит к переменному во времени процессу интерференции отраженных волн. Это, в свою очередь, приводит к флуктуации (на 4-5 дБ) уровня отраженного от Луны и принятого на Земле сигнала. Уровень сигнала уменьшается до нуля только в небольшие интервалы времени (несколько секунд), соответствующие моментам, когда направление вибрации изменяется на противоположное.
Разница в расстояниях от центра наиболее эффективной части отражающей поверхности Луны до Земли и от ее периферийной части до Земли составляет около 8 км, что соответствует времени распространения радиоволны около 100 мкс. Это приводит к деформации фронта отраженной от Луны волны, что ограничивает полосу модуляции передатчика до 10 кГц. Волна, падающая на поверхность Луны, при отражении изменяет фазу. Поэтому при использовании радиоволн с круговой поляризацией необходимо учитывать, что после отражения направление вращения поляризованной волны меняется на обратное.
Проявление эффекта Допплера в отраженном сигнале обязано вибрации Луны. Знак изменения допплеровского сдвига частоты при отражении от двух противоположных сторон Луны различен. В диапазоне 2 м допплеровский сдвиг достигает плюс-минус 2 Гц, в диапазоне 70 см — плюс-минус 6 Гц, в диапазоне 23 см — плюс-минус 18 Гц.
Время распространения сигнала от Земли до Луны и обратно составляет 2,56 с. За это время можно осуществить ручную коммутацию антенны с передачи на прием.
Сигнал при проведении лунных радиосвязей дважды проходит через земную атмосферу, т.е. дважды преломляется в тропосфере и ионосфере Земли. При малых угломестных положениях Луны сигнал даже при нормальном состоянии атмосферы подвергается рефракции: в тропосфере — до 1°, в ионосфере — До 0,5°. При аномальных состояниях атмосферы приведенные значения углов преломления могут быть большими. В этом случае может возникнуть такая ситуация, когда излучение с Земли проходит мимо Луны, а при высоком расположении слоя Е ионосферы вообще не покидает поверхность Земли.
Радиоволна, проходя через атмосферу Земли, испытывает влияние эффекта Допплера: в диапазоне 2-х метров допплеровское изменение частоты составляет 14 Гц, а на 70 см — 3 Гц. Точное значение допплеровского сдвига определяется как угломестным расположением станции, так и свойствами атмосферы. Учитывая, что и отраженная от поверхности Луны радиоволна подвержена допплеровскому сдвигу, а знак изменения противоположен знаку изменения частоты, вызванному влиянием атмосферы Земли, может возникнуть ситуация, когда результирующий частотный сдвиг будет равен нулю.
Радиоволна, проходящая ионосферу Земли, под действием ее магнитного поля изменяет плоскость поляризации (эффект Фарадея). Поворот плоскости поляризации зависит от длины пути в ионосфере, т.е. от угломестного положения Луны, и пропорционален квадрату частоты. Для 2-метрового диапазона при низком положении Луны над горизонтом поворот плоскости поляризации равен 3360е, т. е. составляет девять полных оборотов плюс 120°.
Источник