Нейтронные звезды
Нейтронная звезда — космическое тело, являющийся одним из возможных результатов эволюции звёзд. Состоит, в основном, из нейтронной сердцевины. Покрыта сравнительно тонкой (∼1 км) коркой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца. Но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.
Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, — до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек сверхновых звёзд.
Масса нейтронной звезды
Массы большинства нейтронных звёзд составляют 1,3—1,5 массы Солнца. Это близко к значению предела Чандрасекара. Теоретически допускается существование нейтронных звёзд с массами от 0,1 до примерно 2,5 солнечных масс. Однако значение верхнего предела массы в настоящее время достоверно неизвестно. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных).
Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа. Максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова. Численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.
Строение нейтронной звезды
Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс. Для сравнения — у Земли около 1 Гс. Именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары. Это звёзды, обладающие магнитными полями порядка 1014 Гс и выше.
К 2012 году открыто около 2000 нейтронных звёзд. Порядка 90% из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд. То есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества нейтронная звезда может быть в этом случае видна с Земли в разных спектральных диапазонах, включая оптический. На который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).
Нейтронные звёзды — одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.
В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звезда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия.
Открытие пульсаров
Теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты при радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический радиомаяк». Но любая обычная звезда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.
Взаимодействие нейтронной звезды с окружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величину магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии развития, существуют альтернативные теоретические модели.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Нейтронные звезды — возможный результат эволюции светил
На самом деле, нейтронные звезды это небесные тела, которые являются одним из вероятных конечных этапов эволюции светил. Ведь, как известно, у каждого свой жизненный путь и своя, скажем так, смерть.
Нейтроны — это тяжёлые элементарные частицы, не имеющие электрического заряда. Они, наряду с протонами, являются главными элементами ядра.
Как образуется нейтронная звезда
Считается, что образование нейтронной звезды это результат вспышки сверхновой. То есть то, что остаётся от тела после взрыва. Другими словами, это конечный продукт вспышки или звёздный остаток.
Между прочим, если такой остаток больше солнечного в три раза, то его эволюция продолжается. В результате коллапса формируется чёрная дыра.
По данным учёных, любой представитель главной последовательности, при условии массы больше Солнца в 8 раз, может эволюционировать в нейтронное светило.
«Проект-Технарь» является свободной площадкой, на которой можно найти или опубликовать чертежи, курсовые или дипломные работы на техническую тематику. Найти чертежи можно на studiplom.ru
Взрыв сверхновой
Когда происходит взрыв нейтронной звезды, внешняя оболочка резко проваливается на ядро. В это время возникает волновой скачок, то есть ударная волна. Которая, к слову, разносит вокруг частицы вещества из внешних слоёв.
Кроме того, часть вещества из разрушившихся слоёв попадает в центр. Благодаря чему внутренняя часть имеет высокую плотность и температуру. Надеюсь, теперь понятно, почему маленькая нейтронная звезда невероятно мала и тяжела.
Стоит отметить, что свою энергию после взрыва светило начинает переносить не равномерно, а потоками. Что, собственно, и вызывает его нестабильность.
Получается, что само ядро остается, но его свойства (масса, плотность, температура и т.д.) меняются.
Как устроены нейтронные звезды
В отличие от других тел они, главным образом, состоят из нейтронного центра (сердцевины). Отсюда, кстати, и появилось название типа.
А сверху их покрывает кора, образуемая тяжёлыми атомными ядрами, нейтронами и электронами.
Помимо этого в структуре рассматриваемых светил выделяют несколько частей.
Внутреннее строение
Строение
Атмосфера — тоненький (не более 100 см) слой ионизированного газа, то есть плазмы. Здесь сосредоточено тепловое излучение тела.
Внешняя кора содержит ядра и электроны, по толщине может быть несколько сотен метров. Притом в ней газ представлен в разных составах. Например, самые верхние покровы состоят из невырожденного газа, а в середине он уже вырожденный. Чем глубже, тем его состояние меняется на релятивистское и ультрарелятивистское вырождение.
Внутренняя кора включает в себя электроны, свободные нейтроны и ядра атомов с множеством нейтронов. Причем количество нейтронных частиц увеличивается с глубиной. Данный слой имеет протяжённость до нескольких километров.
Внешнее ядро выделяют у объектов малой массы. Поскольку может занимать всё пространство до звёздного центра. Вдобавок оно состоит преимущественно из нейтронов. Хотя некоторая доля протонов и электронов все же есть.
Внутреннее ядро наблюдается только у массивных светил. Оно отличается высокой плотностью. А радиус, по меньшей мере, составляет несколько километров. К сожалению, точный состав внутреннего вещества ещё не известен. Но определённо в нём присутствую нейтроны, барионы и кварки. Конечно, дальнейшее изучение и исследования продолжаются. И мы когда-нибудь узнаем все тайны нейтронных звезд.
Особенности нейтронных звезд
Как оказалось, нейтронная звезда невероятно мала и тяжела. Правда, она имеет плотность намного больше атомного ядра. Но из-за давления вещества, находящегося внутри ядра, дальнейшее гравитационное сжатие не продолжается.
Собственно говоря, вес и масса нейтронной звезды приблизительно равна солнечной. При этом её размер, точнее радиус, не более 20 км.
К тому же, к отличительным характеристикам нейтронных звезд относится их вращение вокруг своей оси. Стоит отметить, высокую скорость такого движения. Если говорить точнее, она составляет несколько сотен оборотов в секунду.
Также важной чертой является сильное магнитное поле. Его мощь, в значительной мере, определяет остальные свойства и происходящие процессы.
Что интересно, сила гравитации звёздных тел после вспышки сильно увеличивается. Поэтому им свойственны огромная скорость падения вещества и сжатие сердцевины. Другими словами, это объясняет резкий характер происходящих процессов.
А вот столкновение внешних и внутренних слоёв нейтронных звезд может привести к разрушению атомов падающего вещества. При этом эти атомы превращаются в нейтроны.
Классификация
Разумеется, нейтронные звезды, как и любые другие объекты, делятся на виды. Хотя учёные установили, что они могут за свою жизнь изменяться.
В основном на их развитие влияют скорость вращения вокруг своей оси и магнитное поле. Так как собственное вращение со временем тормозится, а магнитное поле слабеет, то другие свойства и процессы также меняются.
Нейтронные звезды, их типы и примеры
Радиопульсары или, по-другому, эжекторы обладают высокой вращательной скоростью и сильными магнитными полями. Они, так сказать, выталкивают заряженные релятивистские частицы, излучаемые в радиодиапазоне. Кстати, первым из данного вида звёздных тел открыли радиопульсар PSR B1919+21.
Пропеллеры, напротив, не выделяют заряженные частицы. Однако из-за высокой скорости вращения и силы магнитной области вещество поддерживается над поверхностью. Правда, данный тип светил сложно обнаружить и он мало изучен.
Рентгеновский пульсар или аккретор отличается тем, что в нём вещество попадает на поверхность. Потому как небольшой темп оборотов позволяет ему спускаться, но уже в состоянии плазмы. В свою очередь, она нагревается благодаря магнитному полю. Как следствие, это вещество ярко светится в рентгеновском диапазоне. А вот пульсация возникает в результате вращения, при котором происходит затмение горячей материи. К примеру, первый аккретор — Центавр X-3 не только имел пульсацию своей яркости, но и постоянно менял период колебаний.
Рентгеновский пульсар
Георотатор имеет малую вращательную скорость, что вызывает приращение массы тела с помощью силы гравитации вещества (газа) из окружающего пространства. Такой процесс, между прочим, называется аккрецией.
Несмотря на это, границы области вокруг небесного тела позволяют магнитному полю удерживать плазму до того, как она окажется на поверхности.
Георотатор
Эргозвезда, на самом деле, представляет собой теоретически возможный тип. По мнению учёных, такой объект может сформироваться при слиянии или столкновении нейтронных звёзд.
Предполагают, что в ней имеется эргосфера, то есть область пространства-времени, расположенная рядом с чёрной дырой. Она, по идее, лежит где-то между горизонтом событий и пределом статичности. Проще говоря, подобные объекты имеют место быть, но это не точно.
Тайны нейтронных звезд
Можно сказать, что до реального открытия этот звёздный класс был сначала спрогнозирован в теории. То есть астрономы предполагали возможность появления подобных космических объектов.
Впервые же, их открыли лишь в 1967 году. Причем это был радиопульсар B1919+21 из созвездия Лисички.
Сейчас же число найденных нейтронных звёзд свыше 2500. Как выяснилось, из них лишь немногие входят в кратные системы. В действительности же, большая часть это отдельные светила.
Созвездие Лисичка
К удивлению, некоторые считают, что в скором времени появится в Солнечной системе нейтронная звезда, которая принесёт апокалипсис и конец света.
По некоторым данным, периодически в нашей системе появляется небесное тело с сильным магнитным полем. Его часто называют планетой Нибиру.
Более того, легенды и мифы рассказывают о том, что этот таинственный объект уже посещал нас. Такое нашествие всегда несёт за собой разрушение. Опять-таки, согласно древним легендам подобное происходило несколько раз. И, если это правда, наша планета всё выдержала.
На самом деле, астрономы замечали странный объект, который пока не идентифицировали. Хотя нет никаких доказательств о том, что он приближается к Земле и вообще, что это нейтронная звезда. Иногда, люди любят приукрашивать действительность.
Планета Нибиру (изображение)
Итак, мы разобрались что такое нейтронная звезда. Надеюсь, вам было интересно узнать как появляются и на какие типы делится этот вид светил.
Источник
Астрофизики уточнили предельную массу нейтронных звезд
Kevin Gill / flickr.com
Немецкие астрофизики уточнили максимально возможную массу нейтронной звезды, опираясь на результаты измерений гравитационных волн и электромагнитного излучения от события GW170817. Оказалось, что масса невращающейся нейтронной звезды не может быть больше 2,16 масс Солнца, говорится в статье, опубликованной в Astrophysical Journal Letters.
Нейтронные звезды — это сверхплотные компактные звезды, которые образуются во время вспышек сверхновых. Радиус нейтронных звезд не превышает нескольких десятков километров, а масса может быть сравнима с массой Солнца, что приводит к огромной плотности вещества звезды (порядка 10 17 килограмм на кубический метр). В то же время, масса нейтронной звезды не может превышать определенный предел — объекты с большими массами коллапсируют в черные дыры под действием собственной гравитации.
По различным оценкам, верхняя граница для массы нейтронной звезды лежит в диапазоне от двух до трех масс Солнца и зависит от уравнения состояния вещества, а также от скорости вращения звезды. В зависимости от плотности и массы звезды ученые выделяют несколько различных типов звезд, схематичная диаграмма изображена на рисунке. Во-первых, не вращающиеся звезды не могут иметь массу, большую MTOV (белая область). Во-вторых, когда звезда вращается с постоянной скоростью, ее масса может быть, как меньше MTOV (светло-зеленая область), так и больше (ярко-зеленая), но все же не должна превышать еще один предел, Mmax. Наконец, нейтронная звезда с переменной скоростью вращения теоретически может иметь произвольную массу (красные области разной яркости). Впрочем, всегда следует помнить, что плотность вращающихся звезд не может быть больше определенной величины, иначе звезда все равно коллапсирует в черную дыру (вертикальная линия на диаграмме отделяет стабильные решения от нестабильных).
Диаграмма различных типов нейтронных звезд в зависимости от их массы и плотности. Крестом отмечены параметры объекта, образовавшегося после слияния звезд двойной системы, пунктирными линиями — один из двух вариантов эволюции объекта
L. Rezzolla et al. / The Astrophysocal Journal
Из предыдущих работ астрофизиков следует, что после слияния нейтронных звезд образовалась гипермассивная нейтронная звезда (то есть ее масса M > Mmax), которая в дальнейшем развивалась по одному из двух возможных сценариев и через небольшой промежуток времени превратилась в черную дыру (пунктирные линии на диаграмме). Наблюдение за электромагнитной компонентой излучения звезды указывает на первый сценарий, в котором барионная масса звезды остается практически постоянной, а гравитационная масса относительно медленно уменьшается за счет излучения гравитационных волн. С другой стороны, гамма-всплеск от системы пришел практически одновременно с гравитационными волнами (всего на 1,7 секунды позже), а значит, точка превращения в черную дыру должна лежать близко к Mmax.
Поэтому если проследить эволюцию гипермассивной нейтронной звезды обратно до начального состояния, параметры которого были с хорошей точностью рассчитаны в предыдущих работах, можно найти значение интересующей нас Mmax. Зная Mmax, несложно уже найти MTOV, поскольку эти две массы связаны соотношением Mmax ≈ 1,2 MTOV. В этой статье астрофизики выполнили такие вычисления, используя так называемые «универсальные соотношения», которые связывают параметры нейтронных звезд различной массы и не зависят от вида уравнения состояния их вещества. Авторы подчеркивают, что их вычисления используют только простые предположения и не опираются на численное моделирование. Конечный результат для максимально возможной массы составил от 2,01 до 2,16 масс Солнца. Нижняя граница для нее была получена раньше в результате наблюдений за массивными пульсарами в двойных системах — проще говоря, максимальная масса не может быть меньше 2,01 масс Солнца, поскольку астрономы в действительности наблюдали нейтронные звезды с такой большой массой.
Ранее мы писали о том, как астрофизики с помощью компьютерных симуляций получили ограничения на массу и радиус нейтронных звезд, слияние которых привело к событиям GW170817 и GRB 170817A.
Источник