Меню

Наше звезда солнце является белым карликом красным гигантом звездой главной последовательности

Солнце — звезда солнечной системы

Солнце — центральная и единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99,8% от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на Земле (фотоны необходимы для начальных стадий процесса фотосинтеза), определяет климат. Солнце состоит из водорода (

92% от объёма), гелия (

7% от объёма) и следующих, входящих в его состав в малых концентрациях, элементов: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000K, поэтому Солнце светит почти белым светом, но из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок.

Центральная часть Солнца с радиусом примерно 150 000 километров, в которой идут термоядерные реакции, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150 000 кг/м³ (в 150 раз выше плотности воды и в

6,6 раз выше плотности самого тяжёлого металла на Земле — осмия), а температура в центре ядра — более 14 миллионов градусов. Анализ данных, проведённый миссией SOHO, показал, что в ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в энергию превращаются 4,26 миллиона тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2·1027 тонн.

Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также ионизированного водорода. В нашей галактике Млечный Путь насчитывается свыше 100 миллионов звёзд класса G2. При этом 85% звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём это красные карлики, находящиеся в конце своего цикла эволюции). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза гелия из водорода.

Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот примерно за 225—250 миллионов лет. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу за 8 земных суток. В настоящее время Солнце находится во внутреннем крае Рукава Ориона нашей Галактики, между Рукавом Персея и Рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m).

Солнце принадлежит к первому типу звёздного населения. Одна из распространённых теорий возникновения Солнечной системы предполагает, что её формирование было вызвано взрывами одной или нескольких сверхновых звёзд. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержатся аномально большая доля золота и урана, которые могли бы быть результатом эндотермических реакций, вызванных этим взрывом, или ядерного превращения элементов путём поглощения нейтронов веществом массивной звезды второго поколения.

Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м², и до земной поверхности доходит только 1000 Вт/м². Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения с помощью фотосинтеза перерабатывают её в химическую форму — кислород и органические соединения. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива. Ультрафиолетовое излучение Солнца имеет антисептические свойства, позволяющие использовать его для дезинфекции воды и различных предметов. Оно также вызывает загар и имеет другие биологические эффекты — например, стимулирует производство в организме витамина D.

Наблюдаемый с Земли путь Солнца по небесной сфере изменяется в течение года. Путь, описываемый в течение года той точкой, которую занимает Солнце на небе в определённое заданное время, называется аналеммой и имеет форму цифры 8, вытянутой вдоль оси север-юг. Самая заметная вариация в видимом положения Солнца на небе — его колебание вдоль направления север-юг с амплитудой 47°. Существует также другая компонента этой вариации, направленная вдоль оси восток-запад и вызванная увеличением скорости орбитального движения Земли при её приближении к перигелию и уменьшением — при приближении к афелию. Первое из этих движений является причиной смены времён года.

Земля проходит через точку афелия в начале июля и удаляется от Солнца на расстояние 152 млн км., а через точку перигелия — в начале января и приближается к Солнцу на расстояние 147 млн км. Видимый диаметр Солнца между этими двумя датами меняется на 3 процента. Поскольку разница в расстоянии составляет примерно 5 млн. км., то в афелии Земля получает примерно на 7% меньше тепла. Таким образом, зимы в северном полушарии немного теплее, чем в южном, а лето немного прохладнее.

Читайте также:  Любить любви как солнце

Солнце обладает сильным магнитным полем, напряжённость которого меняется со временем, и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывают разнообразные эффекты, совокупность которых называется солнечной активностью и включает в себя такие явления как солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д., а на Земле вызывает полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачи электроэнергии, а также негативно воздействует на живые организмы, вызывая у людей, чувствительных к магнитным бурям, головную боль и плохое самочувствие. Предполагается, что солнечная активность играет большую роль в формировании и развитии Солнечной системы. Она также оказывает влияние на структуру земной атмосферы.

Текущий возраст Солнца (точнее — время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 миллиарда лет. Считается, что быстрым сжатием под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа. Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 миллиардов лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 миллионов тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Красный гигант

Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. Вместо этого, через 4-5 миллиардов лет оно превратится в звезду типа красный гигант. По мере того, как водородное топливо в ядре будет выгорать, внешняя оболочка красного гиганта будет расширяться, а ядро — сжиматься и нагреваться. Примерно через 7,8 миллиарда лет, когда температура в ядре достигнет приблизительно 100 миллионов градусов, в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазе развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу и сбрасывать оболочку. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы.

Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а большая часть её атмосферы рассеется в космическое пространство. Увеличение температуры Солнца в период становления красным гигантом таково, что в течение следующих 500—700 миллионов лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. В связи с этим, для выживания человечества станут несомненно актуальными межзвёздные полёты.

Белый карлик

После того, как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик, которая в течение многих миллиардов лет будет постепенно остывать и угасать. Такой сценарий эволюции Солнца типичен для звёзд малой и средней массы.

Источник

Какой звездой является Солнце? К какому типу звезд относится наше светило?

Существует множество типов звезд: красные гиганты, белые карлики и т.п. А к какому классу относится наше Солнце?

Чаще всего звезды классифицируют по их положению на так называемой главной последовательности, или диаграмме Герцшпрунга–Рассела. По спектральной классификации Солнце принадлежит к классу G2V (желтый карлик). Признаками, по которым звезду относят к тому или иному классу, являются ее масса и температура поверхности. Если звезда имеет температуру 5000-6000 К (у Солнца она равна 5778 К) и массу в диапазоне 0,8-1,2 масса Солнца, то ее относят к желтым карликам. Другими известными представителями этого класса являются Альфа Центавра А и Тау Кита. Средняя продолжительность жизни желтых карликов составляет 10 млрд лет.

Хотя астрономы и называют Солнце карликом, на самом деле оно превосходит по яркости большую часть звезд в Млечном Пути. Дело в том, что 70-90% звезд в нашей галактике относятся к красным карликам, которые меньше и тусклее Солнца.

Не следует думать, что желтые карлики светят желтым светом. На самом деле и Солнце, и почти все остальные звезды светят белым цветом.

Стоит отметить, что положение звезд на диаграмме Герцшпрунга–Рассела меняется со временем. Примерно через 5 млрд лет Солнце резко вырастет в размерах (но не по массе) и станет красным гигантом. Далее наша звезда потеряет большую часть своей материи и превратится в белого карлика. Можно считать, что на этом эволюция Солнца прекратится, и оно будет медленно остывать.

Читайте также:  Монокини дотянуться до солнца 320 kbps

Также существует классификация звезд по их химическому составу. Солнце считается звездой, относящейся к типу «население I». Это значит, что в его составе очень много тяжелых элементов (металлов). Существуют еще звезды «населения II», металличность которых на порядки ниже. Теоретически могут существовать и звезды «населения III», в которых тяжелых элементов почти нет, однако пока что астрономам не удалось их обнаружить.

Население звезды указывает на время её рождения. Звезды «населения III» возникли самыми первыми, но, вероятно, не дожили до наших дней. Из их материи сформировалось население II, а население I – это уже третье поколение звезд.

Список использованных источников

Источник

Виды звезд в наблюдаемой Вселенной

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет

90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Читайте также:  Время стояло полуденное солнце

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Цефеиды

Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда.

Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Adblock
detector