Меню

Наше солнце наше будущее

Солнце — наше будущее

В последние десятилетия XX века человечество столкнулось с очень серьезными проблемами, каждая из которых приобрела для нас поистине судьбоносное значение. Обратим внимание на пути решения глобальной энергетической проблемы, или, как творят сейчас, глобального энергетического кризиса.

По оценкам специалистов, человечество в настоящее время производит 10 триллионов киловатт энергии различного вида. И к середине XXI века количество производимой энергии может возрасти на целый порядок, то сеть достичь 100 триллионов киловатт, что составит уже 1/1000 часть от падающей на Землю солнечной энергии.

В ХХI веке ожидается появление первых термоядерных электростанций. Работать они будут на тяжелом изотопе водорода — дейтерии. Для реактора термоядерной электростанции в сутки потребуется всего лить 34 г дейтерия (сущая мелочь!), а его запасы в океанах прямо-таки неисчерпаемые.

Однако репутацию ядерных реакторов сильно подорвал Чернобыль. Страшная авария, которая произошла 26 апреля 1986 года на Чернобыльской атомной электростанции, вызвала радиоактивное загрязнение обширных территорий, особенно на Украине и в Белоруссии: коснулась, например, города Слав города и Могилевской области. Тысячи людей, подвергшихся облучению радиоактивным стронцием и другими смертоносными изотопами, уже сошли в могилу. По даже те люди, которые живут за многие сотни километров от Чернобыля, стали его заложниками: петербуржцам Чернобыль сократил жизнь как минимум на три года.

Чернобыль — самая настоящая Хиросима Европы! Но значит ли это, что надо прекратить дальнейшее строительство атомных электростанций? Нет. Строить надо, только реакторы должны быть надежные, а люди, работающие с ними, очень ответственные. Тогда новые чрезвычайные происшествия будут исключены.

Одним из самых перспективных направлений энергетики будущего наряду с термоядерными электростанциями следует считать развитие космической гелиоэнсргетики, то есть создание солнечных космических электростанций. Ведь энергия нашего дневного светила практически неисчерпаема и экологически чиста.

Первым обратил внимание на безвозвратную потерю для человечества почти всей лучистой энергии Солнца основоположник теоретической космонавтики К. Э. Циолковский. И он стал искать способы овладения этой поистине несметной энергией. Ученый строил планы выведения в космос с помощью им же изобретенных ракет на жидком топливе специальных устройств для утилизации (использования) солнечной энергии.

Сбор лучистой энергии Солнца в открытом космосе имеет важные преимущества. Это, прежде всего, высокий уровень потока солнечной радиации — на единицу площади в космосе поступает в среднем раз в десять больше солнечной энергии, чем на такую же площадь земной поверхности.

Следующий важный момент в работе космической гелиостанции — непрерывность процесса производства энергии. Космическая гелиоустановка может «перехватывать» солнечные лучи практически непрерывно.

Но чтобы воспользоваться всеми преимуществами космической гелиоэнергетики, человечеству необходимо решить очень сложные задачи. Главная из них — выведение в космос составных частей солнечной электростанции, сборка их на орбите и в дальнейшем обслуживание этой электростанции квалифицированными специалистами. При мощности гелиоустановки 1 млн киловатт космическая электростанция будет представлять собой весьма грандиозное сооружение массой 10—20 тыс. т, а площадь солнечного коллектора, основанного на фотоэлектрическом способе преобразования лучистой энергии Солнца, должна достигать 10 км!

Надо думать, что во второй половине XXI века индустриализация околоземного космического пространства (включая Луну) станет одним из основных направлений практической деятельности землян. И в случае успешного решения этой задачи человечество получит новый экологически чистый источник энергии. Это будет лучистая энергия Солнца, преобразованная в электрический ток. Академик С. П. Королев (1907—1966), с именем которого связано начало космической эры, так охарактеризовал научно-технический прогресс человечества: «То, что вчера было лить мечтой, сегодня становится реальной задачей, а завтра — ее решением».

Источник

Будущее солнца

Солнце, обретя после бурной юности относительную стабильность, получает энергию в результате ядерного синтеза. Ежесекундно примерно 700 млн тонн атомов водорода сливаются в топке солнечного ядра, чтобы стать ядрами более тяжелого элемента – гелия. В этом процессе около 4 млн тонн вещества преобразуется в энергию.

К счастью, Солнце настолько огромно, что это – лишь мельчайшая крупица его общего энергетического запаса. Хотя за миллиарды лет этот запас медленно, но необратимо расходуется. По самым точным прогнозам, Солнце стабильно сияет приблизительно 5 млрд лет и, вероятно, ему хватит водорода, чтобы так же светить еще 5 млрд лет.

Однажды ресурс израсходуется, и начнется неизбежный процесс трансформации, который со временем приведет Солнце к гибели.

РОСТ ДО ГИГАНТА

На первой стадии этого процесса яркость Солнца неожиданно вырастет в тысячу раз в результате поисков дополнительных ресурсов питания. Начнет снижаться давление, поддерживаемое реакциями синтеза в ядре, и верхние слои Солнца опадут внутрь под действием собственной силы тяжести, сжимаясь и нагревая зону вокруг ядра до температур и давления, достаточно высоких, чтобы запустить горение водорода в оболочке.

С прекращением горения водорода в ядре центр Солнца начнет разрушаться под собственным весом, а поддерживать солнечное сияние будет оболочка сгорания водорода. Сжимающееся ядро станет значительно горячее, что повысит температуру и скорость реакций в оболочке сгорания водорода. В результате этого Солнце станет ярче. В то же время повышение давления от потока излучения звезды на ее внешние слои будет способствовать тому, что слои, лежащие выше оболочки сгорания водорода, будут раздуваться.

За миллиарды лет диаметр Солнца увеличится в 250 раз, поглотив орбиты Меркурия, Венеры и, вероятно, Земли. Несмотря на повышение яркости, увеличение площади поверхности приведет к тому, что количество энергии, излучаемой каждым квадратным метром, уменьшится. В результате температура поверхности Солнца упадет до 3000 °С, а его цвет из желтого станет красным. Так наша звезда превратится в красного гиганта.

Даже если внешние слои Солнца расширятся, его выгоревшее ядро с гелием, синтезированным из водорода, будет продолжать сжиматься, становясь плотнее и горячее. Со временем условия станут такими экстремальными (температура – примерно 100 млн °С), что ядра гелия начнут сливаться, образуя более тяжелые ядра, такие как углерод и кислород.

При гелиевой вспышке реакции синтеза стремительно распространятся по ядру, воспламеняя сердце Солнца. Повышение давления и излучения от центра приведут к тому, что оболочка сгорания водорода станет менее плотной, а количество ядерных реакций снизится настолько, что, несмотря на два источника питания, Солнце станет менее ярким. Его диаметр также уменьшится, а температура на поверхности возрастет. Но горение гелия даст Солнцу лишь короткую передышку на пути к гибели. После сравнительно короткого периода (несколько десятков миллионов лет) ядро исчерпает и этот источник питания, и превращение в красного гиганта возобновится, так как выгоревший гелий также поднимется в оболочку вокруг ядра.

Читайте также:  Что такое частота вращения чему равна частота вращения земли вокруг солнца

На этот раз отсрочки не будет. Внешние слои Солнца будут расширяться и охлаждаться по мере сжатия ядра, но условия в ядре никогда не достигнут тех параметров, которые необходимы для горения тяжелых элементов, таких как углерод. Так как оболочки горения водорода и гелия начнут опадать внутрь Солнца, вся звезда станет нестабильной, то увеличиваясь, то уменьшаясь в размерах и меняя яркость, поскольку в ней будут противостоять друг другу процессы расширения и сжатия.

Со временем периодические импульсы расширения во внешних слоях Солнца станут настолько сильными, что раздувшаяся звезда начнет сбрасывать свои внешние слои мерцающего газа со скоростью, достаточно высокой для преодоления ими ее гравитации. Из них сформируется прекрасная, но недолговечная планетарная туманность, называемая так из-за того, что на большом расстоянии она по форме будут напоминать планету.

По космической временной шкале планетарные туманности недолговечны. Срок их жизни – всего несколько тысяч лет, так как они сбрасывают большую часть полученного от звезды газа в межзвездное пространство, где он становится материалом для будущих звезд. Этот газ еще долго будет горячим и сияющим, поскольку он будет ионизироваться излучениями из горячей центральной части Солнца, теперь напрямую попадающими в космос. Хотя реакции в его ядре прекратились, оно все еще очень горячее и способно излучать агрессивный ультрафиолет.

ПОСЛЕДНИЙ АККОРД БЕЛОГО КАРЛИКА

Формирование планетарной туманности – необратимый процесс. Если Солнце сбросит свою оболочку, все последующие реакции будут неизбежны, пока не останется только раскаленное ядро. Оно, сжатое собственной силой тяжести в шар размером с Землю, к этому моменту станет белым карликом – выгоревшей звездой, содержащей один из наиболее плотных известных материалов. Ложка этого материала, состоящего из ядер углерода и кислорода, будет весить примерно как слон.

Этап белого карлика означает конец существования звезды солнечного типа. Ее ждет медленное охлаждение в течение многих миллионов лет. Со временем температура ядра упадет до уровня, при котором оно не будет даже сиять. Белый карлик станет черным карликом, забытым звездным остатком, мимо которого будут проноситься обугленные холодные остатки бывшей Солнечной системы.

Источник

Наше солнце наше будущее

Солнце. О будущем нашего Солнца

Карта сайта

Астрономия
древнейшая из наук
Античная астрономия
Хронология астрономии
Современная астрономия
Основы астрономии
Начала астрономии
Время и небесная сфера
Созвездия
Движение небесных тел
Астроприборы
Астрофизика
Обзоры астрооборудования
Астрономические наблюдения

Общая астрономия
Солнечная система
Звезды
Наша Галактика
Внегалактическая астрономия
Внеземные цивилизации
Астрономы мира и знаменательные даты
Дополнительно
Форумы Astrogalaxy.ru
Астрономия для детей
Планетарии России
Это интересно
Новости астрономии
О проекте

Солнечная система. Солнце. О будущем нашего Солнца

БЕГСТВО ОТ УМИРАЮЩЕГО СОЛНЦА Внимательному человеку даже недолгая прогулка по лесу многое расскажет. Как проходит жизнь деревьев — от едва проклюнувшегося из земли ростка до пышно раскинувшейся зеленой кроны и до последних дней уже покосившегося, изгрызенного дуплами лесного старца. Наблюдая многие годы за великим обилием звезд, таких разных по яркости, цвету, по расположению на небосводе и их удаленности от Земли, астрономы (особенно за последние одно-два столетия) сумели понять, определить и выделить среди них совсем молодые светила, достигшие зрелости, и те, чей путь уже подходит к концу. Могут даже сказать, каким именно будет конец той или иной звезды. Немецкий научно-популярный журнал «Бильд дер Виссеншафт» в одном из последних номеров прошлого года опубликовал несколько статей, посвященных старению Солнечной системы. Но, пожалуй, самое любопытное в них — рассказ о некоторых проектах спасения жизни, зародившейся миллионы лет назад на планете Земля. «Наука и жизнь» предлагает реферат этой подборки, идеи которой кажутся слишком фантастичными. Однако современная астрономия и астрофизика располагают столь большим запасом фактов и теорий о развитии Вселенной, что это позволяет им строить даже такие «сумасшедшие» гипотезы. Мы не приводим имена всех астрономов и астрофизиков, исследующих на основе новейших достижений будущее Солнечной системы и прилегающего к ней космического пространства, — их более двух десятков. Названы лишь авторы трех проектов продления жизни нашей планеты.

ЖИЗНЕОПИСАНИЕ СОЛНЦА ЗА 12,4 МИЛЛИАРДА ЛЕТ Нашу звезду — Солнце — относят к средним или даже малым по величине, ничем не выдающимся небесным телам. Эта звезда не прожила еще и половины срока, отведенного ей природой, — от рождения до смерти. Однако она уже израсходовала почти половину водорода, который в ядре светила превращается в гелий, высвобождая гигантскую энергию. Вместо 70,6 процента, какие первоначально составлял водород в массе солнечного вещества, теперь доля его упала до 36,3 процента. Ежесекундно 600 тонн водорода превращаются в центральных областях Солнца в гелий. Происходит это при температуре не ниже 15 миллионов градусов. Примерно 4,3 тонны становится лучистой энергией, которая дает тепло и самому Солнцу, и всему его планетному семейству. Давление в центральных областях светила противостоит гравитационным силам тяжести его верхних слоев. Эта постоянная борьба ядра и периферии — а только в центре звезды благодаря высоким давлению и температуре возможны процессы слияния атомных ядер — с течением времени приносит победу центральным силам. Объем, в котором происходит ядерный синтез, постоянно расширяется. Поэтому неуклонно повышается светимость Солнца. «Вскоре после того, как Солнце стало звездой, — заключают ученые, — его светимость составляла только 70 процентов от того, что оно излучает сегодня. В последующие 6,5 миллиарда лет светимость нашей звезды будет неуклонно расти прямо пропорционально времени».

Когда же в центре Солнца затухнут ядерные реакции синтеза, начнется новая схватка между центром и внешними слоями звезды. «Выгоревший» водород, пишут астрофизики, уступит внешнему давлению, центр сожмется. Но тогда повысится концентрация остатков еще не вступившего в ядерную реакцию водорода. Он разгорится «жарче», и центр снова расширится. В конце концов Солнце в возрасте 7,5 миллиарда лет «раздуется» и перейдет в стадию красного гиганта. Предполагается, что его диаметр превзойдет диаметр нынешнего Солнца в 160 раз. В таком состоянии светило проживет несколько миллионов лет. Оболочка этого шара будет относительно тонкой и нагретой лишь на 3000 градусов — отсюда и красный цвет звезды. Поверхностные слои сравнительно быстро рассеются. В центре же останется очень плотный шар, который станет еще разогреваться. При температуре 100 миллионов градусов ядерные реакции преодолеют новый порог: ядра гелия (полученные из водорода) начнут сливаться в ядра углерода. Гелий как топливо выделяет несоизмеримо больше энергии, чем сжигаемый водород. Солнце из красного гиганта за короткое время перейдет в состояние белого карлика. По размерам оно станет меньше нынешнего Солнца в десяток раз, но по светимости — в 40-50 раз больше. В таком виде наше светило проживет, возможно, около 100 миллионов лет.

Но когда придут к концу запасы и водорода и гелия, повторится бурное расширение светила — оно снова станет красным гигантом. Зона горения гелия переместится ближе к периферии. Светило, в которое превратится Солнце, потеряет стабильность: начнутся отдельные вспышки, происходящие оттого, что в ядерную реакцию включатся не затронутые ранее остатки гелия. Светимость будет то резко возрастать, то падать — такое показывают наблюдения за другими звездами. В отдельных случаях светимость звезды возрастает более чем в 5000 раз. Обычно это последний яркий акт умирания малых и средних по размеру звезд. Потом начинает усиливаться «солнечный ветер», то есть разбегание частиц звездной оболочки. Пройдут тысячи лет — и от красного гиганта останется лишь маленькое горячее ядро. Примерно 75 000 лет наше светило снова будет в стадии белого карлика, который излучает все слабее. Оставшаяся масса составит половину того, что Солнце имеет ныне, его диаметр уменьшится до 80 000 километров (вместо нынешних 1 391 980 километров), а плотность вещества достигнет двух миллионов тонн в каждом кубическом сантиметре. Вся история нашего ласкового, а порой и довольно жесткого Солнца, воспетого шаманами, жрецами, поэтами, займет 12,4 миллиарда лет.

МОЖНО ЛИ ОСТАТЬСЯ В СЕМЬЕ ПЛАНЕТ? Все упомянутые события в Солнечной системе отдалены от нас трудно вообразимыми временными расстояниями. Но масштабы предстоящих катастроф таковы, что ученые уже сейчас задумываются над тем, как спасти человечество. Конечно, можно предположить, что до наступления этого драматического времени люди переселятся на какую-нибудь из пригодных для жизни планет в Млечном Пути. Только вряд ли человечество с легкостью покинет колыбель своего разума и бросит на неотвратимую гибель Землю. Вот почему уже сейчас рождаются идеи, планы, как сохранить для человечества его родную планету. Еще задолго до того, как раздувшееся Солнце опалит земной шар, начнутся резкие изменения климата, их не вынесет большая часть живых организмов. Наша планета окажется в положении своей соседки — Венеры, какой она нам ныне представляется: безжизненная, горячая пустыня (примерно 470° С), над которой висит сплошной мощный облачный слой, состоящий преимущественно из углекислого газа. Область, где смогут существовать белковые тела, сильно отодвинется к периферии нашей планетной системы. Если светимость Солнца увеличится более чем в полтора раза, на Марсе установятся температуры, близкие к нынешним земным. Люди могли бы найти там пристанище, но только временное: не исключено, что расширившаяся внешняя оболочка Солнца чуть позднее поглотит и Марс.

В лучшем положении окажутся луны крупных планет. Толстые ледяные панцири, сковывающие сейчас спутники Юпитера, растают и образуют океаны. А вода — одно из основных условий для жизни. Правда, мы еще не знаем, насколько велики и надежны эти водные запасы. Во всяком случае, судя по данным, полученным с автоматической межпланетной станции «Галилей», есть основания считать, что спутники Юпитера — Европа и Каллисто — содержат под ледяной коркой воду. Крупнейший спутник Сатурна — Титан — тоже может стать убежищем для жизни, хотя ныне там господствует холод: -180° С. И атмосфера на Титане, состоящая сейчас из азота, образует вместе с различными углеводами плотные облака, которые поглощают 90 процентов солнечного излучения. Если убрать этот колпак, создающий непрозрачность атмосферы, то поверхность Титана получит в 17 раз больше солнечной энергии, чем сегодня. А если еще добавить действие парникового эффекта, то среднюю температуру Титана можно поднять на 80 градусов. Этот спутник Сатурна ряд ученых рассматривают как природную лабораторию, где можно увидеть, изучить, понять, какими были условия на Земле в самое раннее время ее существования. Биохимический и строительный материал на Титане несомненно есть. По расчетам ученых, у человечества впереди еще около 500 миллионов лет, отпущенных природой на то, чтобы оживить это небесное тело, как раз к тому времени, когда Земле придет время умирать.

ПЛАНЕТУ МОЖНО ОТОДВИНУТЬ ОТ СВЕТИЛА Разогрев и расширение внешней оболочки Солнца, вероятно, приведут к тому, что ближайшие к нему планеты (может быть, только один Меркурий) будут поглощены раскаленным веществом, а сфера, в которой сохранятся условия, пригодные для жизни, передвинется на значительно большее расстояние от светила. Швейцарский физик Мечислав Таубе, предвидя подобное развитие событий, задумался, возможно ли всю нашу планету передвинуть на другую, более далекую от Солнца орбиту. И он еще в 1982 году просчитал возможность такого путешествия Земли. По его замыслу, вдоль экватора следует построить 240 башен 20-километровой высоты, на вершинах которых разместятся термоядерные реактивные двигатели. В момент, когда оси двигателей будут направлены на центр солнечного диска и совпадут с намеченной траекторией удаления от Солнца, двигатели включат, и реактивная сила начнет толкать планету прочь от светила. Столь большая высота для башен с двигателями нужна, чтобы струи уходили в космос, а не гасли в атмосфере, иначе планета не сдвинется с места. Расчеты швейцарского физика показывают, что каждый двигатель должен развивать мощность 8,3.1017 ватт. Эта энергия может быть получена за счет реакции превращения 2,4 тонны дейтерия в гелий. 15 000 тонн дейтерия сообщат планете движение, которое в течение одного миллиарда лет при непрерывной попеременной работе 240 двигателей позволит Земле достичь орбиты Юпитера и стать одним из его спутников. Но для такого путешествия надо превратить в реактивные струи восемь процентов массы всей нашей планеты, то есть много больше, чем весит вода в Мировом океане. Немалую часть вещества придется еще позаимствовать у одной из ближайших планет, например у Юпитера.

Однако и орбита Юпитера, на которой может по этому сверхфантастическому проекту оказаться Земля, все же не так далеко удалена от красного гиганта, чтобы Земля не испытывала там губительного воздействия его внешней оболочки. Правда, автор проекта полагает, что частичное испарение океанов Земли создаст облачность, способную отразить излишнее облучение. Уходить от Солнца на еще большее расстояние, по подсчетам швейцарского астрофизика, нет смысла. Потому что в стадии красного гиганта Солнце пробудет всего несколько миллионов лет, а затем станет снова быстро сжиматься, превратится в белого карлика и начнет деградировать как источник энергии. И тогда Земле, чтобы получать достаточное количество тепла и света, понадобится орбита меньшая, чем сейчас у Меркурия. Но при таком приближении к светилу силы притяжения довольно скоро остановят вращение Земли вокруг ее оси. Планета будет повернута к Солнцу всегда одной стороной. Значит, жизнь на Земле быстро погибнет: на ночной стороне — от тьмы и холода, а на освещенной — от жары и губительного для всего живого ультрафиолетового и рентгеновского излучения, идущего от белого карлика. Таким образом, проект М. Таубе не дает долговременной перспективы. Есть другая идея — создать искусственное Солнце вблизи нашей планеты. Источником энергии должны служить ядерные реакции. Топливо взять у Юпитера. Искусственное Солнце не будет светить во все стороны, как нынешнее, а только направленно — на Землю. Судя по предварительным расчетам, такое рукотворное светило способно поддерживать жизнь на планете в течение 100 миллиардов лет. Английский ученый М. Фогг развивает эту идею несколько иначе. По его мнению, Юпитер уже в наше время стоит превратить в звезду, направленно дающую Земле энергию.

ИДЕЯ РЕКОНСТРУКЦИИ СОЛНЦА Поскольку меньше половины одной миллиардной части солнечного излучения падает на Землю, а вся остальная невообразимо огромная масса энергии бесполезно рассеивается в космосе, ученые задумались: нельзя ли эту расточительность уменьшить и направить больше солнечной энергии на Землю, к нашей пользе. Может быть, когда-нибудь земляне поищут пути реконструирования Солнца в таком направлении, которое будет более удобно людям. Д. Крайсвелл, руководитель института при университете в Хьюстоне (США), еще в 1985 году пришел к идее вообще сократить излучение Солнца до уровня, который бы вполне достаточно обеспечивал потребности Земли. Тогда, как показывают его расчеты, Солнце сможет в 2000 раз дольше жить и работать для нас. Данные Крайсвелла опираются на зависимость, существующую между светимостью звезды, ее массой и продолжительностью ее жизни. Физический смысл здесь простой: чем больше масса небесного тела, тем выше температура и давление в его недрах. Следовательно, ядерные реакции там идут энергичнее. Светимость звезды больше — значит, ее жизнь короче, потому что при высокой температуре ядерное топливо сгорает быстрее. Ну а если мы хотим продлить жизнь светила? Надо каким-то образом снизить его вес, тогда светимость уменьшится, а жизнь продлится. Но каким образом облегчить вес такого огромного тела, как звезда? Крайсвелл предлагает расположить на орбите вокруг Солнца множество ионных ускорителей, которые смогут действовать за счет его лучистой энергии. Потоки заряженных частиц, идущих от ускорителей, образуют около полюсов светила однородное постоянное магнитное поле. Оно будет захватывать частицы солнечной атмосферы и удалять их в космос. По выкладкам автора, в течение года они выбросят в пространство три миллиардных доли массы нашей звезды. Это соответствует примерно одной десятой процента массы Земли. За 300 миллионов лет Солнце потеряет восемь процентов своей нынешней массы. Оставшегося вещества хватит на поддержание ядерной реакции, которая раскаляет светило. Солнце, существенно уменьшившееся, будет способно многие миллиарды лет непрерывно посылать свет и тепло. Крейсвелл к тому же предлагает рационально использовать материал, отнятый у Солнца. Удаленные частицы можно будет сгруппировать в шары и получить (после того как они остынут) 12 космических островов, которые смогут дать пристанище колонистам. Но и у этого фантастического проекта есть серьезные недостатки. Во-первых, если удалять солнечную материю только с поверхности, то изменится соотношение сил центра и периферии. Это грозит тем, что Солнце может внезапно раздуться в красного гиганта. И тогда трагическая судьба всего находящегося в окружении Солнца неизбежна. Во-вторых, небесная механика говорит: если Солнце потеряет 0,2-0,3 своей массы, то орбиты планет приблизятся к Солнцу. И тогда Земля, как нынешний Меркурий, утратит движение вокруг собственной оси, будет постоянно обращена к Солнцу одной стороной. Такая планета для жизни непригодна — об этом речь уже шла.

МОЖЕТ БЫТЬ, ПОМЕНЯТЬ СОЛНЦЕ? Этот замысел выглядит еще фантастичнее: покинуть наше постаревшее Солнце и пристроиться к другой, более молодой звезде. Космос знает такие перемены хозяев, они случаются, когда две звезды, имеющие спутников, пролетают неподалеку друг от друга. В 1984 году астроном Д. Г. Хиллс из лаборатории в Нью-Мексико опубликовал результаты компьютерного моделирования подобной ситуации в космосе. Он убедился, что светило может потерять свою планету, если другая звезда пройдет на близком расстоянии от них. Астрономы наблюдали, как планета — спутник одной из звезд была увлечена тяготением проходящей мимо звезды. При таком захвате орбита спутника может остаться почти круговой, как у Земли. И это очень важное обстоятельство, потому что планета будет получать равномерный обогрев. М. Фогг, которого мы уже упоминали, высказал в 1989 году несколько идей, как можно провести подобную грандиозную космическую рокировку в космосе. Если человечеству она понадобится в течение ближайших нескольких миллионов лет, то надо рассчитывать на звезды, лежащие в радиусе, не превышающем 100 световых лет. Всего в этом объеме обычно «живет» около 12 000 звезд, из них 300 по размеру подобны Солнцу и не имеют планетных систем, многие существенно моложе нашего светила. Как заставить одну из них пролететь близко к нашей системе? Здесь могли бы пригодиться ускорители частиц, о которых говорит Д. Крайсвелл. Магнитные поля, созданные струями заряженных частиц, можно так варьировать, что удаляемая ими материя звезды будет давать отдачу в желаемом направлении и таким образом изменять траекторию полета небесного тела. Вычисления показывают, что за один миллион лет избранная людьми звезда сможет отклониться от прежнего курса на четыре градуса, а за срок в одиннадцать миллионов лет ее курс можно изменить на 34 градуса. В заключение хочется привести слова великого физика Нильса Бора: «Прогнозы трудны, особенно когда они нацелены на отдаленное будущее». Трудны, но увлекательны, и поскольку у человечества в запасе есть еще примерно два миллиарда лет, за это время люди непременно что-либо придумают, может быть, попроще и понадежнее приведенных здесь гипотез.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector