Меню

Наше солнце было сверхновой тяжелые ядра

Как появилось Солнце и Земля миллиарды лет назад: взрыв сверхновой звезды и рождение планет

6 миллиардов лет назад

Это был обычный день пустого места Галактики. В абсолютной пустоте плавало гигантское облако водорода и гелия, каких тысячи в космосе. Но ослепительный взрыв сверхновой звезды изменил все.

Триллиарды тонн осколков врезались в межзвездное облако, взорвали его и закрутились бешеным водоворотом породы и энергии в виде диска. Космический водоворот раскалялся и сжимался миллиарды лет, а затем в центре появился плотный маленький диск слипающихся кусков космической ярости.

Температура росла вместе с размером, а потом плотный центральный диск взорвался молодой протозвездой, пока тусклой. Смерч вокруг протозвезды не стихал, он кормил её. Притяжение кидало в пасть новорожденной газы, пыль и обломки. Наконец юная протозвезда раскалилась докрасна и завертелся вечный процесс сжигания гелия и водорода в ее раскаленном ядре. Так родилось Солнце.

Шершни

Но не все остатки погибшей матери-звезды сгорели в пекле Солнца. За миллионы лет уцелевшие раскаленные куски перемешанные с пылью остывали в космическом морозе. Твердея, они становились элементами таблицы Менделеева. Железо и кремний, магний, алюминий и кислород.

Кружа в свете нового Солнца и его силы притяжения, элементы соединялись вместе еще сотни миллионов лет. Сначала в незаметные комочки, потом в камни и огромные глыбы. А затем в гигантские куски в сотни тонн весом и 600 километров длиной. Так появились планетезимали.

Планетезимали кружили гигантским роем вокруг новорожденного Солнца. Злобными шершнями они сталкивались друг с другом сокрушительными ударами энергии, расплавляя внешнюю легкую оболочку элементов и сохраняя плотную тяжелую.

Так сформировалось тяжелое железное ядро и более легкая мантия вокруг него. Это структура всех планет Вселенной.

Удар Солнца

А затем вспыхнуло подросшее Солнце настоящей звездой — на 70% ярче чем сегодня! И могучая волна солнечных бурь ударила по стаям крушащих друг друга планетезималей. По всем этим облакам пыли, осколкам и камням вокруг их яростной мясорубки.

Удар Солнца спалил или выдул в космос слабых. А огромных планетезималей раскидал кучами на солнечной орбите. Так зародилась Солнечная система.

Планетезимали били друг друга, расплавляя меньших и притягивая останки. Еще сотня миллионов лет и везде победил один, самый большой, с железным плотным ядром и мантией. Так на третьей орбите от Солнца появилась Земля 4, 5 миллиардов лет назад вместе с другими планетами.

Но последние огромные планетезимали не ставшие планетами, не находили себе места.

Их тянуло к планетам, они сталкивались с планетами самыми ужасными ударами которые можно только представить. Один такой ударил по Земле наискось. Отломав кусок земной мантии, планетезималь сожрал его. Но и сам замер неподалеку. Так появилась Луна.

Земля

В первые недели Земли вращение и притяжение окончательно сформировало планету. В центре появилось ядро железа и никеля, жарче самого Солнца. Но его сжала такая сила давления и плотность, что жар не расплавляет внутреннее ядро. Оно твердое хоть и раскаленное.

Вокруг твердого ядра возникло внешнее ядро из тяжелых расплавленных металлов. Потоки металла потекли кольцом во внешнем ядре со скоростью 25 километров в год, формируя магнитное поле Земли.

А жар раскаленного ядра послал токи наверх, заставил двигаться тектонические плиты и создавать материки, горы и океаны.

Ядро Земли окружил огромный слой мантии из легких каменных пород, что не смогли противостоять силе давления центра планеты и были вытолкнуты выше. Мантия окружила ядро планеты тысячами километров расплавленных камней и скал, это назвали магмой .

Часть магмы была вытолкнута наверх и замерзла. Превратившись в гранит, базальт, обсидиан и прочий камень, что окружают нас. Из остывшей магмы образовалась тонкая земная кора с сушей и океанами.

Источник

Тяжелые элементы попали в Солнечную систему из слившихся за 80 млн лет до ее образования нейтронных звезд

Рис. 1. В процессе слияния пары нейтронных звезд энергия выделяется в виде гравитационных волн, которые стало возможно ловить со вводом в строй установок LIGO и Virgo. Именно так в августе 2017 года было зафиксировано слияние двух нейтронных звезд в далекой галактике NGC 4993. Последующие наблюдения в оптическом и других диапазонах показали, что в ходе такого слияния синтезируются тяжелые химические элементы. Рисунок из статьи A. Frebel, T. C. Beers, 2018. The formation of the heaviest elements

Основным механизмом синтеза тяжелых химических элементов долгое время считались вспышки сверхновых. Однако эта версия не очень согласуется с наблюдаемым распределением изотопов тяжелых элементов и продуктов их распада. В начале мая в журнале Nature были опубликованы две статьи с описанием результатов моделирования двух альтернативных процессов, в ходе которых может идти r-процесс синтеза тяжелых элементов. Авторы одной из работ разбирались с тем, что происходит при слиянии двух нейтронных звезд. Их данные указывают на то, что этот процесс может отвечать за значительную часть плутония, кюрия и других актиноидов, существовавших в Солнечной системе на начальном этапе ее формирования. Во второй работе ученые смоделировали один из вариантов гиперновой — так называемый коллапсар. Свои расчеты они проверяли на недавно открытой в Местной группе карликовой галактике, для звезд которой характерно повышенное содержание европия и золота. Обе работы, несомненно, приближают нас к пониманию того, какой механизм формирования тяжелых элементов во Вселенной является основным и как эти элементы попали к нам на Землю. Однако до полной ясности еще далеко.

Читайте также:  Пляжный тент от солнца спортмастер

Звезды — не только источники электромагнитного излучения. Их можно рассматривать и как заводы по производству тяжелых химических элементов. Больше того, именно звезды так или иначе ответственны за синтез почти всех химических элементов: по существующим представлениям, при Большом взрыве могли образоваться только самые легкие ядра (водород, гелий, литий), а в реакциях скалывания, которые идут под действием космических лучей, — следующие за ними в Периодической таблице бериллий и бор.

Однако при длящемся сотни миллионов или миллиарды лет «нормальном» горении звезды может образоваться только чуть больше одной пятой от общего числа известных химических элементов. Элементы тяжелее железа (порядковый номер железа в Периодической системе — 26) не могут синтезироваться в термоядерных процессах, идущих в активно работающей звезде, поскольку такое слияние становится энергетически невыгодным: энергия, необходимая для получения ядер тяжелее железа, больше, чем энергия, выделяющаяся в ходе такого слияния. Это означает, что большая часть элементов Периодической системы образовалась не в термоядерных котлах звезд, а в каких-то других процессах.

Наиболее вероятным источником тяжелых химических элементов считались сверхновые. Этим термином называют последнюю стадию эволюции некоторых звезд, в ходе которой выделяется огромное количество энергии. Из-за этого яркость звезды увеличивается на несколько порядков — так что она становится сравнимой с яркостью целой галактики. Например, сверхновая 1054 года, из остатков которой сформировалась Крабовидная туманность, согласно записям китайских астрономов, больше 20 суток наблюдалась на небе невооруженным глазом даже днем — и это несмотря на то, что расстояние до нее оценивается в 6500 световых лет.

Основная классификация сверхновых основана на их спектральных характеристиках. Главное подразделение — на два типа — идет по наличию или отсутствию в спектре линий водорода: у сверхновых I типа их нет, у сверхновых II типа они есть. Также есть несколько возможных сценариев конца звездной эволюции, которые приводят к образованию сверхновых. Подробно мы эти детали обсуждать не будем, скажем лишь, что сценарий гравитационного коллапса, который, по-видимому, отвечает за большинство разновидностей сверхновых, реализуется достаточно часто: по некоторым оценкам, в нашей Галактике за столетие происходит несколько таких событий (S. M. Adams et al., 2013. Observing the Next Galactic Supernova), но в основном это сверхновые I типа. Сверхновые II типа, судя по нынешним данным, довольно редки (ниже мы увидим, что это важно).

Кроме значительного высвобождения энергии, которая нужна для слияния легких атомных ядер и образования ядер элементов тяжелее железа, при вспышках сверхновых образуется большое количество свободных нейтронов, также необходимых для образования тяжелых атомов. Многие ядра тяжелее железа (а начиная с изотопа висмута, нуклида 209 Bi — все ядра) образуются в результате так называемого r-процесса (или быстрого захвата нейтронов, буква «r» здесь от слова rapid — «быстрый»). И здесь важно, что на заключительной стадии эволюции центральная часть звезды содержит большое количество нейтронов (n) и α-частиц (состоящих их двух протонов и двух нейтронов), образующихся при фоторасщеплении железа 56 Fe → 13α + 4n.

В ходе r-процесса легкие ядра быстро захватывают большое количество нейтронов, которые затем могут превращаться в протоны. Основной механизм захвата нейтронов — реакция (n, γ), в которой ядро, захватывая нейтрон, «стравливает» лишнюю энергию, испуская γ-квант. Так ядро наращивает свою массу и заряд, перескакивая по клеткам таблицы Менделеева. Захват нейтронов происходит до тех пор, пока скорость реакции (n, γ) не станет меньше скорости распада изотопа: это происходит при уменьшении концентрации нейтронов или при образовании нестабильного ядра, которое (быстрее, чем оно захватит новый нейтрон) распадется в результате испускания α-частицы или деления. Альфа-распад становится энергетически возможным для ядер, содержащих не менее 60 протонов.

В результате r-процесса образовались в том числе и долгоживущие радиоактивные атомные ядра, некоторые из которых присутствовали в молодой Солнечной системе, а некоторые (например, 235″ target=_blank>уран-235) можно обнаружить в ней до сих пор. Запасы короткоживущих радиоактивных изотопов (с периодом полураспада меньше 100 млн лет), которые были в Солнечной системе в момент ее формирования, напрямую не обнаруживаются — за 4,75 млрд распалось почти всё. Однако судить об их присутствии и оценивать их содержание в молодой Солнечной системе можно по продуктам их распада, которые «застряли» в метеоритах (F. L. H. Tissot et al., 2016. Origin of uranium isotope variations in early solar nebula condensates).

Читайте также:  Среднее расстояние от солнца до юпитера составляет 300 млн км вторая космическая скорость для тела

Еще одно возможное астрономическое явление, при котором может протекать r-процесс с образованием тяжелых химических элементов, — слияние нейтронных звезд (B. Côté et al., 2018. The origin of r-process elements in the Milky Way). До недавнего времени об этих астрономических катаклизмах было мало известно, поэтому такой сценарий образования тяжелых элементов, хотя и был предсказан (D. Eichler et al., 1989. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars), толком не рассматривался. Все изменилось в 2017 году, когда был зафиксирован первый гравитационно-волновой сигнал от слияния двух нейтронных звезд в галактике NGC 4993 (событие получило обозначение GW170817) и, что очень важно, по горячим следам удалось его идентифицировать в оптическом и других диапазонах (подробнее см. в статье Сергея Попова Зафиксировано слияние нейтронных звезд!). Изучая спектры этого события, ученые обнаружили явные следы того, что при слиянии шел и r-процесс (D. Kasen et al,. 2017. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event).

Нейтронные звезды — завершающая стадия эволюции звезд-гигантов (с массами 10–30 масс Солнца), сколлапсировавшие «остатки» их ядер, оставшиеся после сброса внешних оболочек в ходе вспышки сверхновой. При диаметре всего 20 километров масса нейтронной звезды составляет 1,5–3,0 солнечных масс, а плотность ее вещества достигает колоссальных значений 10 14 –10 15 г/см 3 . При такой плотности электроны «вдавливаются» в атомные ядра, где они объединяются с протонами и образуют нейтроны. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление материи, возникающее за счет взаимодействия нейтронов. Подробнее об этих удивительных космических телах можно прочитать в книге Сергея Попова «Суперобъекты».

Нейтронные звезды, состоящие в основном из плотно упакованных нейтронов (среди которых могут встречаться отдельные протоны), по своим свойствам похожи на атомные ядра. Самое значительное отличие (помимо, естественно, размера и массы) в том, что в ядрах атомов нуклоны — протоны и нейтроны — притягиваются друг к другу под действием сильного взаимодействия, а в нейтронных звездах — под воздействием гравитации. По современным моделям столкновение нейтронных звезд тоже должно приводить к выделению большого количества энергии и высокой плотности нейтронных потоков.

Столкновения нейтронных звезд происходят очень редко. По оценкам, такое событие в Млечном Пути происходит не чаще, чем раз в 100 тысяч лет (J. Abadie et al., 2010. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors). Однако нам повезло наблюдать одно из таких столкновений — уже упоминавшееся событие GW170817 — буквально в прямом эфире и установить при этом, что там шло образование тяжелых элементов. Таким образом, для моделирования образования Солнечной системы встает важный вопрос: какой из двух описанных механизмов синтеза тяжелых химических элементов, в том числе плутония и кюрия, которые мы сейчас рассматриваем как искусственные, должен считаться основным.

Имре Бартош (Imre Bartos) из Университета Флориды и Сабольч Марка (Szabolcs Marka) из Колумбийского университета попробовали ответить на этот вопрос. Для этого они оценили, каким бы было среднее содержание некоторых тяжелых радиоактивных элементов-актиноидов (или продуктов их распада) в Солнечной системе, если бы они попали туда в результате каждого из обсуждаемых процессов.

Расчет логично проводить для элементов, содержание продуктов распада которых в Солнечной системе сейчас известно (так результаты моделирования можно сравнить с эмпирически измеренными значениями). В обсуждаемой работе это были два актиноида — кюрий 247 Cm (период полураспада 15,6 млн лет) и плутоний 244 Pu (период полураспада 80,8 млн лет).

О количестве кюрия в молодой Солнечной системе можно судить по отношению содержаний неодима (Nd) и урана 238 U, а о количестве плутония — анализируя содержание тория (Th) в веществе метеоритов, которое, как предполагается, близко по составу к зарождавшейся Солнечной системе. Также оценивалось содержание урана 235 U (период полураспада этого нуклида 703,8 млн лет), содержание которого можно оценить не только для молодой, но и для современной Солнечной системы. Период полураспада 238 U еще больше — 4,4 млрд лет, что лишь немного меньше возраста Солнечной системы — 4,75 млрд лет

Расчеты показали малую вероятность того, что источником актиноидов для молодой солнечной системы были вспышки сверхновых I типа. Учитывая высокую частоту этих событий, в земной коре сейчас должно было бы содержаться больше урана 235 U, а в метеоритах — больше продуктов распада 247 Cm и 244 Pu. То есть наблюдаемое сейчас в Солнечной системе количество радиоактивных актиноидов может объясняться r-процессами протекающими либо в результате вспышки сверхновой II типа, либо в результате столкновения нейтронных звезд.

Читайте также:  Квн утомленные солнцем 2020

Рис. 2. Предлагаемый путь появления основной массы актиноидов в газопылевом облаке, из которого впоследствии сформировалась Солнечная система. При столкновении нейтронных звезд образуется черная дыра, вокруг которой формируется аккреционный диск (показан красным). Динамические силы в аккреционном диске и звездный ветер приводят к тому, что вещество выносится из этой системы в космическое пространство. В облаке этой выброшенной материи (серое) легкие ядра быстро захватывают свободные нейтроны, в результате чего образуются тяжелые химические элементы, включая актиноиды. Выброс вещества достиг газопылевого облака, из которого образовалась Солнечная система, обогатив ее тяжелыми элементами. Рисунок из обсуждаемой статьи в Nature

По утверждению Бартоша и Марки вспышки сверхновой II типа тоже вряд ли могли обогатить Солнечную систему актиноидами в необходимом количестве. Во-первых, такие события происходят в 10–100 раз реже, чем столкновения нейтронных звезд. Во-вторых, по такому сценарию разрушаются массивные звезды (масса которых превышает 8 солнечных масс), которые преимущественно располагаются ближе к центру Галактики, — вероятность взрыва сверхновой II типа поблизости от зарождающейся Солнечной системы слишком низкая (E. Berger, 2014. Short-duration gamma-ray bursts). Наилучшим образом, по оценкам Бартоша и Марки, те соотношения изотопов актиноидов, которые должны были быть в туманности, из которой сформировалась Солнечная система, объясняются, если допустить, что за 80 млн лет до этого на расстоянии около 1000 световых лет произошло слияние двух нейтронных звезд.

С выводами ученых согласны далеко не все коллеги. Критики их модели указывают на низкую точность определения содержания продуктов распада плутония-244 в метеоритах, а также важное для этой модели предположение о том, что распространение тяжелых элементов по Галактике происходило равномерно (то есть не учитывалось влияние находившихся вблизи от слившихся нейтронных звезд и зарождавшейся Солнечной системы массивных тел).

Работа Бартоша и Марки появилась на сайте журнала Nature 1 мая. А через неделю там была опубликована еще одна статья практически на эту же тему. Ее авторы, астрономы из того же Колумбийского университета, что и Сабольч Марка, смоделировали образование тяжелых элементов в коллапсарах. Этим термином называют быстровращающиеся массивные звезды, которые заканчивают свою эволюцию взрывом гиперновой (см. Superluminous supernova) с образованием черной дыры и аккреционного диска вокруг нее. В этих условиях тоже может протекать r-процесс, причем его «производительность» (благодаря большой массе звезды) должна быть гораздо больше, чем у сливающихся нейтронных звезд.

По расчетам, один коллапсар может породить примерно в 30 раз больше тяжелых элементов, чем пара сливающихся нейтронных звезд, а всего на долю этого процесса ученые относят до 80% всех тяжелых элементов во Вселенной.

Результаты второй работы хорошо согласуются с наблюдательными данными, объясняя необычно высокое содержание тяжелых элементов в звездах карликовой галактики Сетка 2 (Reticulum II, рис. 3). Эта галактика относится к Местной группе и находится на расстоянии примерно 30 кпк от нас, она была открыта 2015 году. Ученые считают, что несмотря на то, что в среднем коллапсары взрываются реже, чем сливаются пары нейтронных звезд, эти события могли происходить уже через сравнительно небольшое время после формирования первых звезд. Так что «коллапсарный» механизм обогащения пространства тяжелыми элементами должен был заработать раньше, а его продукты — обогатить звезды этой карликовой галактики еще на этапе их формирования.

Рис. 3. Слева — область неба в направлении на созвездие Сетка (горизонтальные черточки поверх самых ярких звезд — оптический дефект). Справа — тот же участок неба после удаления (при помощи специальных алгоритмов) всех звезд Млечного Пути. То, что осталось — это и есть ультратусклая карликовая галактика Сетка 2. Изображение из статьи A. Frebel, T. C. Beers, 2018. The formation of the heaviest elements

Остается заключить, что дискуссия о происхождении тяжелых элементов во Вселенной — и, в частности, на Земле — еще далека от завершения. Тем интереснее!

Источники:
1) Imre Bartos, Szabolcs Marka. A nearby neutron-star merger explains the actinide abundances in the early Solar System // Nature. 2019. V. 569. P. 85–88. DOI: 10.1038/s41586-019-1113-7.
2) Daniel M. Siegel, Jennifer Barnes & Brian D. Metzger. Collapsars as a major source of r-process elements // Nature. 2019. V. 569. P. 241–244. DOI: 10.1038/s41586-019-1136-0.

Источник

Adblock
detector