Меню

Луна стандартный вид числа

Стандартный вид числа

Стандартный вид числа — это его запись в виде произведения

Число n называется порядком числа, записанного в стандартном виде.

В стандартном виде можно записать любое положительное число.

Как правило, стандартный вид числа используют для записи больших и малых величин.

Записать число в стандартном виде и указать порядок числа:

2) 12 346 000 000;

Чтобы записать число в стандартном виде, надо представить его в виде произведения, первый множитель которого — число от единицы до десяти (1≤a

Получили число, записанное в стандартном виде. Его порядок n=6.

При решении примеров на приведение числа к стандартному виду удобнее деление числа на

заменить умножением на

Итак, для приведения к стандартному виду числа, больше либо равного 10, запятую в его записи переносим влево на n цифр и результат умножаем на 10 в степени n:

2) 12 346 000 000=12 346 000 000,
Чтобы величина первого множителя входила в промежуток от 1 до 10, надо запятую в записи данного числа перенести на 10 знаков влево, а чтобы число не изменилось, умножить результат на 10¹º:

Это число записано в стандартном виде. Его порядок n=10.

Чтобы первый множитель соответствовал условию 1≤a

Порядок числа n= -3.

Таким образом, для приведения к стандартному виду числа, меньшего единицы, запятую в его записи переносим на n цифр вправо и результат умножаем на 10 в степени -n:

Переносим запятую в записи числа на 5 цифр вправо (что соответствует умножению числа на 10⁵). Результат умножаем на 10 в минус пятой степени. Порядок числа n= -5.

Порядок числа n= -4.

Число 5430 представляем в стандартном виде. Для этого запятую в его записи переносим на 3 цифры влево и результат умножаем на 10³.

Далее выполняем умножение степеней с одинаковыми основаниями.

Порядок числа n=6.

Порядок числа n=6.

Порядок числа n= -4.

Порядок числа n= -10.

Сравнение чисел, записанные в стандартном виде

  • Сравниваем порядок чисел. Число с большим порядком больше числа с меньшим порядком.
  • Если числа имеют одинаковые порядки, сравнивают первые множители произведения.

9,8 \cdot 10^7 \]» title=»Rendered by QuickLaTeX.com»/>

так как порядок первого числа больше порядка второго числа (8>7);

поскольку порядок первого числа меньше порядка второго числа (-8 2,97 \cdot 10^9 \]» title=»Rendered by QuickLaTeX.com»/>

Читайте также:  Фазы луны когда лучше худеть

так как при равных порядках первый множитель у первого числа больше, чем у второго (3,4>2,97).

Источник

Cтандартный вид числа

В задачах по физике часто приходится работать с очень большими и очень малыми величинами.

Как вести вычисления в атомной физике? Или записать радиус электрона? Если потребуется сравнить массу электрона и массу планеты Земля, как произвести вычисления с числами, которые несопоставимы друг с другом в обычном виде?

Физики и математики, столкнувшись с такими задачами, поняли, что для решения подобных задач требуется привести числа к единому стандартному виду. Так появилось понятие стандартный вид числа.

Прежде чем переходить к объяснению, как записать число в стандартном виде, нужно вспомнить определение степени. Особенно хорошо нужно помнить, чему равняется число « 10 » в различных степенях.

  • 10 − 2 =
    1
    10 2

    =

    1
    100

    = 0,01 (более подробно об отрицательной степени можно прочитать в уроке 9 класса «Отрицательная степень»)

  • 10 −1 =
    1
    10 1

    =

    1
    10

    = 0,1

  • 10 0 = 1
  • 10 1 = 10
  • 10 2 = 100
  • 10 3 = 1000

Вспомним, что при умножении целого числа на 10, 100, 1000 и т.д. мы просто добавляли тоже количество нулей, что и в 10, 100, 1000 и т.д..

  • 5 · 10 = 50
  • 27 · 100 = 2 700
  • 18 · 1000 = 18 000

Теперь запишем тоже самое, используя определение степени.

  • 5 · 10 = 5 · 10 1 = 50
  • 27 · 100 = 27 · 10 2 = 2 700
  • 18 · 1000 = 18 · 10 3 = 18 000

При делении целого числа на 10, 100, 1000 и т.д. мы убирали нули.

  • 13 000 : 100 =
    13 000
    100

    = 130

  • 50 : 10 =
    50
    10

    = 5

Для десятичных дробей действует схожее правило умножения на 10, 100, 1000 . При умножении десятичной дроби на 10, 100, 1000 и т.д. мы перемещаем запятую вправо на количество нулей, что и в 10, 100, 1000 и т.д.

  • 5,7 · 100 = 570
  • 7,013 · 10 = 70,13
  • 68,3 · 1000 = 68 300

С помощью степени можно записать вычисления выше следующим образом:

  • 5,7 · 100 = 5,7 · 10 2 = 570
  • 7,013 · 10 = 7,013 · 10 1 = 70,13
  • 68,3 · 1000 = 68,3 · 10 3 = 68 300

При делении на 10, 100, 1000 и т.д. перемещаем запятую влево .

  • 6,7 : 10 =
    6,7
    10

    = 0,67

  • 0,15 : 100 =
    0,15
    100

    = 0,0015

С помощью определения отрицательной степени можно записать вычисления выше следующим образом:

  • 6,7 : 10 =
    6,7
    10

    = 6,7 · 10 −1 = 0,67

  • 0,15 : 100 =
    0,15
    100

    = 0,15 · 10 −2 = 0,0015

Стандартный вид числа

Вначале обратимся к строгому математическому определению стандартного вида числа. Затем по традиции разберемся на примерах.

Любое натуральное число или конечную положительную десятичную дробь можно записать в виде:

Такая запись называется — стандартный вид числа.
При этом число « n » называют порядком числа « a ».

Из определения выше важно понять, что степень, в которой стоит « 10 », в стандартном виде числа называется порядком .

Теперь к примеру. Пусть нам дано число « 5 600 » и требуется записать его в стандартном виде.

По определению стандартного вида числа необходимо, чтобы перед запятой стояла только одна цифра от « 1 » до « 9 ».

В числе « 5 600 » первая цифра справа — « 5 ». Поставим справа от нее запятую и посчитаем, сколько знаков у нас осталось справа от запятой.

Значит, чтобы из « 5 , 600 » получить « 5600 » нам нужно умножить « 5 , 600 » на « 1000 ». Запишем полученное преобразование.

Теперь запишем « 1000 » с использованием степени.

Завершающим штрихом будет отбрасывание незначащих нулей в десятичной дроби.

Таким образом « 5 600 » в стандартном виде будет выглядеть следующим образом:

Чтобы проверить, что мы не ошиблись в вычислениях, произведем вычисления обратно. Если все выполнено корректно, мы должны получить изначальное число. Убедимся в этом.

Рассмотрим другой пример, когда нужно представить десятичную дробь в стандартном виде. Например, десятичную дробь « 0,017 ».

Согласно определению стандартного вида числа необходимо, чтобы первой цифрой перед запятой стояла только одна цифра от « 1 » до « 9 ».

В десятичной дроби « 0,017 » вначале идет « 0 ». Нам это не подходит, поэтому двигаемся слева направо, чтобы найти первую цифру отличную от « 0 ».

Это цифра « 1 ». Посчитаем сколько знаков (цифр) стояло от запятой до цифры « 1 », включая саму цифру « 1 ».

Получается два знака. Начнем записывать « 0,017 » в стандартном виде. Перенесем запятую и поставим ее справа от « 1 ».

Ответим себе на вопрос: «На что нужно умножить или разделить « 1,7 », чтобы получить изначальное число « 0,017 » ?». Напоминаем, что при делении на 10, 100, 1000 и т.д. запятая переносится Напоминаем, что при делении на 10, 100, 1000 и т.д. запятая переносится влево .

Выходит, чтобы из « 1,7 » сделать 0,017 », нужно « 1,7 разделить на « 100 » (чтобы перенести запятую на два знака влево).

Запишем это деление на « 100 », используя обыкновенную дробь.

С помощью отрицательной степени запишем окончательный вид числа « 0,017 » в стандартном виде.

0,017 = 1,7 : 100 = 1,7 ·

1
100

=
1,7 · 10 −2

Примеры решения задач
на запись числа в стандартном виде

№ 237 Алимов 8 класс

(Устно) Определить порядок числа, выражающего значение физической константы:

1) масса покоя электрона
me = 9,1093897 · 10 −31

Напоминаем, что порядком числа, которое приведено в стандартный вид, называют степень, в которой стоит « 10 ». В данном примере « 10 » стоит в
степени « −31 ». Значит, порядком массы покоя электрона является « −31 ».

№ 238 Алимов 8 класс

Записать в стандартном виде и определить порядок числа k , выражающего физического константу:

2) постоянная Фарадея
F = 96485,309 Кл/моль;

По определению стандартного вида числа необходимо, чтобы перед запятой стояла только одна цифра от « 1 » до « 9 ».

Начнем записывать постоянную Фарадея в стандартном виде. Перенесем запятую после первой цифры отличной от нуля. Это цифра « 9 ».

Зададим себе вопрос: «На что нужно умножить « 9 , 6485309 », чтобы получить « 96485 , 309 » ?» Посчитаем количество знаков (цифр), на которое требуется перенести запятую в « 96485 , 309 », чтобы получить « 96485309 ».

Получается « 4 » знака. Значит постоянная Фарадея в стандартном виде будет выглядеть следующим образом:

Порядком числа « 9,6485309 · 10 4 » является степень, в которой стоит « 10 ». Следовательно, порядок « k = 4 ».

Начнем записывать постоянную Лошмидта в стандартном виде, т.е. как:

Рассчитаем, на какое количество знаков (цифр) требуется перенести запятую, чтобы из « 2 , 686763 » получить « 2686763 ».

Значит, чтобы получить из « 2 , 686763 » нужно изначальное число « 2686763 » умножить на « 10 6 ».

Завершим решение и запишем окончательный ответ, используя свойство «Произведение степеней».

Источник

Adblock
detector