Меню

Луна с самого мощного телескопа

Как один телескоп обнаружил сотни таинственных радиосигналов из космоса?

Впервые быстро исчезающие радиовсплески ученые наблюдали еще в 2007 году. Последующее десятилетия исследований позволили обнаружить около 140 вспышек по всей Вселенной. Немного, правда? Дело в том, что быстрые радиовсплески (FRBS) действительно трудно поймать: для этого необходимо направить радиотелескоп в нужное место в нужное время. При этом предсказать, где и когда удастся поймать всплеск неизвестно. Исследователи отмечают, что большинство радиотелескопов видят только участок неба размером с Луну в данный момент времени, что означает, что подавляющее большинство быстрых радиовсплесков остаются невидимыми. Ситуация, к счастью, изменилась, когда телескоп CHIME, расположенный в Радиоастрофизической обсерватории Доминиона в Британской Колумбии в Канаде, начал принимать радиосигналы. Это произошло в 2018 году в течение первого года работы инструмента и в конечном итоге позволило ученым создать каталог быстрых радиовсплесков. Примечательно, что каталог не только расширяет известное количество быстрых радиовсплесков, но и доступную информацию об их местоположении и свойствах.

Сотни загадочных быстрых радиовсплесков были обнаружены в космосе благодаря канадскому телескопу и международной группе исследователей.

Что такое быстрые радовсплески?

Быстрые радиовсплески (FRBS) – это очень короткие, но очень интенсивные импульсы радиоволн, регистрируемые в радиодиапазоне электромагнитного спектра, которые вспыхивают в течение нескольких миллисекунд, прежде чем исчезнуть без следа. Впервые обнаруженные только в 2007 году, эти события по-прежнему остаются загадкой для астрономов.

Интересно, что эти короткие и таинственные маяки были замечены в различных и отдаленных частях Вселенной, а также в нашей собственной галактике. Их происхождение неизвестно, а внешний вид непредсказуем. Учитывая огромное количество вопросов,которые вызывают FRBS у исследователей, данные, полученные с помощью стационарного радиотелескопа в Британской Колумбии позволили астрономам увеличить число обнаруженных радиовсплесков в четыре раза.

Массив радиотелескопов CHIME обнаружил 535 быстрых радиовсплесков в первый год своей работы.

Телескоп CHIME, специально разработанный для канадского эксперимента по картированию интенсивности водорода, обнаружил 535 новых быстрых радиовсплесков в течение первого года своей работы, между 2018 и 2019 годами. Основываясь на имеющихся наблюдениях, исследователи полагают, что одиночные быстрые радиовсплески могут иметь источники, отличные от повторяющихся:

«Имея все эти источники, мы действительно можем начать получать представление о том, как выглядят FRBS в целом, какая астрофизика может быть движущей силой этих событий и как они могут быть использованы для изучения Вселенной в будущем», – сказала Кейтлин Шин, член CHIME и аспирант кафедры физики Массачусетского технологического института в интервью CNN.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!

Как работает радиотелескоп CHIME?

Телескоп CHIME функционирует немного иначе, чем другие, используемые для радиоастрономии инструменты. Массив из четырех гигантских радиоантенн, сравнимых по размеру и форме с полутрубками, используемыми для сноуборда, совершенно неподвижен. Когда Земля вращается вокруг своей оси, этот массив принимает радиосигналы с половины неба.

Как правило, радиопередатчики перемещаются, чтобы захватить свет из разных областей неба. Вместо этого CHIME использует полностью цифровую конструкцию и имеет коррелятор – цифровой сигнальный процессор для захвата входящих радиосигналов. Он может обрабатывать огромные объемы данных – около 7 терабит в секунду, что эквивалентно небольшому проценту глобального интернет-трафика. Интересно и то, что повторяющиеся вспышки радиовсплесков выглядят по-разному – каждая вспышка длится немного дольше, чем одиночные вспышки.

Таинственные быстрые радиовсплески прослеживаются до спиральных рукавов галактики.

Цифровая обработка сигналов – это то, что позволяет CHIME «смотреть» в тысячах направлений одновременно. Основываясь на собранной информации, исследователи подсчитали, что эти яркие быстрые радиовсплески, вероятно, происходят около 800 раз в день по всему небу.

Составители каталога также считают, что в будущуем смогут использовать вспышки, чтобы лучше понять Вселенную и даже составить карту распределения по ней газа. Дело в том, что когда радиоволны путешествуют в пространстве, вполне вероятно, что они сталкиваются с газом или плазмой. Это может исказить волны, изменить их свойства и даже траекторию. Определение этой информации о радиовсплеске может помочь ученым оценить пройденное ими расстояние и количество газа, с которыми они столкнулись.

«Быстрые радиовсплески несут в себе запись структуры Вселенной, через которую им прошлось пройти, чтобы добраться от источника к нам», — пишут исследователи. «Из-за этого мы думаем, что они станут основным инструментом для изучения Вселенной.

Радиоастрономия – ключ к пониманию Вселенной.

При достаточно быстрых радиовсплесках, возможно, удастся составить карту крупномасштабной структуры Вселенной. «Эти большие структуры составляют нити космической паутины», — сказал Алекс Джозефи, докторант по физике в Университете Макгилла в Канаде.

«С помощью каталога FRB мы обнаружили эту корреляцию между FRB и крупномасштабной структурой. Это действительно, действительно захватывающе и открывает новую эру космологии.» О том, что представляют собой крупномасштабные структуры и могут ли они управлять Вселенной я рассказывала в этой статье.

Источник

Как ученые сделали качественную фотографию Луны, не летая в космос?

При помощи профессионального фотоаппарата можно снять очень даже красивую фотографию Луны. Но чтобы на снимке можно было увидеть мельчайшие детали вроде кратеров и других неровностей, необходимы мощные научные приборы. Обычно, чтобы получить максимально детальные фотографии, используются космические телескопы, которые находятся за пределами Земли. Но недавно фотография удивительного качества была сделана наземным телескопом. С расстояния сотен тысяч километров от поверхности Земли, ученым удалось снять место посадки членов экипажа «Аполлон-15». На фотографии со впечатляющим разрешением можно разглядеть объекты диаметром от 5 метров. Возникает вопрос: какая супер-технология позволила ученым получить настолько хороший снимок, сидя на мягком кресле? На самом деле, использованная технология не новая и в теории позволяет делать снимки еще более далеких объектов.

Читайте также:  Куда луна с небес ушла

Фотография Луны, сделанная при помощи наземного телескопа

Самая четкая фотография Луны от земного телескопа

Об удивительной фотографии Луны было рассказано в научном издании ScienceAlert. На снимке показано место посадки экипажа миссии «Аполлон-15», которая была проведена летом 1971 года. В ее рамках люди в четвертый раз высадились на поверхность Луны и провели на ней почти 3 дня. Астронавты впервые использовали для передвижения лунный автомобиль и проехали на нем 27,9 километров. Они собрали 77 килограммов лунного грунта. В целом, миссия прошла очень даже успешно и была названа «одной из самых блистательных с научной точки зрения».

Лунный автомобиль, использованный в рамках миссии «Аполлон-15»

На опубликованной недавно фотографии Луны можно разглядеть объекты диаметром до 5 метров в ширину. На верхней части снимка, посередине, есть углубление — это кратер Хэдли С диаметром около 6 километров. А рядом есть линия, которая напоминает русло реки. На самом деле, это древняя лавовая трубка Хэдли Рилль. Считается, что когда-то давно на спутнике нашей планеты существовали действующие вулканы. Внутри лавы образовались тоннели, которые и называются лавовыми трубками. Считается, что в будущем посетители Луны смогут использовать их в качестве укрытия.

ратер Хэдли С и лавовая трубка Хэдли Рилль

Новая технология съемки космоса

Фотография была сделана благодаря технологии, разработанной сотрудниками обсерватории Грин-Бэнк, Национальной радиоастрономической обсерватории и Raytheon Intelligence & Space. Все они принадлежат США. По сути, исследователи установили на телескоп Грин-Бэнк мощное устройство для передачи радиоволн в космос. После этого телескоп был направлен в сторону, где находится место посадки «Апполона-11». Эти волны отразились от неровностей на поверхности Луны и были собраны серией радиоантенн, расположенной по все территории Северной Америки. Из полученных данных удалось получить единую фотографию. На самом деле, технология далеко не новая. Радиолокация часто используется для обнаружения самолетов и даже поиска древних сооружений под землей.

Первое испытание улучшенного телескопа Грин-Бэнк было проведено в ноябре 2020 года. Результат, как видно, оказался потрясающим. В будущем исследователи намерены разработать более мощный радиолокационный передатчик и посмотреть, что из этого выйдет. Ожидается, что более длинные волны позволят снять на фото и более отдаленные объекты Солнечной системы. Например, ученые хотят взглянуть на Нептун — восьмую и самую отдаленную от Земли и Солнца планету. Это первая планета, которая была открыта исключительно благодаря математическим расчетам. Единственный космический аппарат, который его посетил, это «Вояджер-2». Он пролетел вблизи планеты 25 августа 1989 года. Атмосфера планеты в основном состоит из водорода и гелия, а твердой оболочки у нее нет.

Если кто-то попробует ступить на поверхность Нептуна, то сразу провалится вниз. Во время спуска будет увеличиваться температура и давление окружающей среды

На самом деле, это не единственная удивительная фотография, сделанная учеными за последнее время. В сентябре 2020 года мой коллега Александр Богданов рассказал о том, как спутнику GREGOR удалось сделать один из самых детализированных фотографий Солнца. Фотография действительно оказалась удивительной, потому что звезда оказалась совсем не такой, как мы ее себе представляем. По словам научного сотрудника проекта GREGOR Люсии Кляйнт, для получения такого кадра им пришлось полностью переработать оптику, механику и электронику. Результат работы исследователей можно посмотреть по этой ссылке.

Источник

Луна с самого мощного телескопа

Рассылка Пикабу: отправляем лучшие посты за неделю 🔥

Спасибо!
Осталось подтвердить Email — пожалуйста, проверьте почту 😊

Комментарий дня

С перегарчиком, да с пивасиком, да с водочкой. Удивляюсь, как такого красавчика бабы уже на кассах на лоскуты расхватывать не стали, да в ногах валяться.

Рекомендуемое сообщество

Пикабу в мессенджерах

Активные сообщества

Тенденции

Телескопы на обратной стороне Луны могут пролить свет на события ранней Вселенной

Инструменты, которые будут использоваться в миссиях на обратной стороне Луны, предоставят нам беспрецедентный взгляд на тёмную эпоху развития ранней Вселенной.

Обратная сторона Луны – это необычная и непривычная территория, которая сильно отличается от знакомой нам видимой стороны спутника Земли. В 1959-м году советский космический зонд «Луна-3» сделал первые фотографии этой скрытой области. Вместо лунных «морей» на снимках было получено множество горных хребтов, кратеров и впадин. В недалёком будущем эта местность станет ещё более необычной: во многих кратерах будут размещены радиотелескопы, роботы-вездеходы, их обслуживающие и лунные орбитальные аппараты, которые будут передавать полученную информацию от радиотелескопов на Землю.

Астрономы планируют разместить на обратной стороне Луны новейшую обсерваторию, которая позволит приоткрыть завесу тёмной космической эпохи. Наша Вселенная не всегда была полна яркими звёздами и галактиками, которые сияют сегодня на земном небосводе. Только через 380 000 лет после Большого взрыва образовались первые атомы водорода. В течении нескольких сотен миллионов лет всё оставалось тёмным, лишённым небесных светил. Затем наступил космический рассвет: появились первые звезды, зарождались галактики, сформировалась крупномасштабная структура Вселенной.

Читайте также:  Луна один его глаз

Зародыши этой структуры должны были присутствовать в водородных облаках. Они не излучают свет, а это означает, что их невозможно изучить с помощью оптического телескопа. Однако водород испускает длинноволновое и низкочастотное радиоизлучение и его можно обнаружить с помощью радиотелескопов. К сожалению, на поверхности Земли такие «сигналы» практически невозможно обнаружить – наша атмосфера и радиошум от всевозможных технических устройств (человеческая деятельность) блокирует эти слабые сигналы.

Уже несколько десятилетий астрономы мечтают о создании на обратной стороне Луны телескопа, который предоставит возможность изучения космических тёмных веков — всего того, что было до образования первых звёзд. Такая обсерватория не зависела бы от атмосферы и телекоммуникационной деятельности человека. И вот наконец несколько космических агентств в ближайшие 3 года планируют разместить на Луне приборы для обнаружения радиоволн.

«Если бы я проектировал идеальное место для низкочастотной радиоастрономии, мне пришлось бы построить Луну», — сообщает астрофизик Джек Бёрнс из Университета Колорадо в Боулдере. «Мы только сейчас добрались до возможности установить такие телескопы на Луне. И мы сделаем это в течение следующих нескольких лет».

Идея обнаружения нейтрального водорода с помощью телескопа восходит к 1940-м годам, когда голландский астроном Хендрик Кристоффель ван де Хюльст предсказал, что атомы водорода могут спонтанно испускать импульсы электромагнитного излучения. Это происходит из-за того, что атом водорода может переключаться между двумя энергетическими состояниями, испуская или поглощая излучение частотой 1420 МГц. Такое колебание импульсов называется «сердцебиением» водорода, которое можно обнаружить, если достаточное его количество соберётся в космосе.

Сигналы должны были впервые появиться примерно через 380 000 лет после Большого взрыва, когда Вселенная остыла настолько, что протоны и электроны, заполнявшие ранее пространство, слились в атомы водорода. Помимо формирования исходного материала, из которого возникнут все последующие химические элементы и объекты, это событие имело дополнительное преимущество, сделав Вселенную прозрачной, высвободив водородное излучение, которое распространилось по всему космосу. Таким образом, нейтральные атомы пронизывали тёмную Вселенную в течение первых десятков миллионов лет, до момента появления первых звёзд и галактик.

Lunar Crater Radio Telescope: Illuminating the Cosmic Dark Ages | NASA

Космологов особенно интересует этот период развития Вселенной прежде всего из-за того, что в то время она была относительно нетронутой, свободной от гравитации и других астрофизических объектов. Распределение нейтрального водорода все ещё несло на себе отпечатки первичных квантовых флуктуаций, которые были значительно усилены быстрым расширением Вселенной в первые доли секунды её существования.

Возможно, что изучение с частотой 1420 МГц (длина волны 21 сантиметр) могут нести признаки новой физики или отклонения от стандартной модели космологии. «Это площадка для проверки самой космологии», — сообщает Бёрнс.

Первые радиотелескопы на обратной стороне Луны будут простыми, они соберут лишь кусочную информацию о водородных облаках. По мере появления более сложных инструментов и знаний о тёмных временах истории Вселенной, на поверхность нашего спутника будут отправляться более сложные аппараты, которые позволят учёным создавать динамические карты водородных облаков с высоким разрешением.

«В нейтральном водороде хорошо то, что это не просто снимок во времени, как реликтовое излучение, — говорит Кристиан Зарб Адами из Оксфордского университета. Отслеживая высокочастотный сигнал в течение длительного времени, телескопы могут отображать эволюцию ранней Вселенной на протяжении тёмных космических веков вплоть до момента зарождения звёзд и галактик (эпохи рассвета) и даже за его пределами. После рассвета наступила эпоха реионизации, когда излучение первых массивных звёзд и других сильных астрофизических явлений разогрели оставшийся нейтральный водород достаточно, чтобы снова превратить его в плазму. Эта эпоха окончательно погасила 21-сантиметровые высокочастотные сигналы.

Пионеры далёкого мира

Некоторые приборы и инструменты уже работают над изучением тёмного космоса. Один из них является частью китайского посадочного модуля Chang’e-4 на обратной стороне Луны, а также лунного орбитального аппарата под названием Queqiao («Сорокий мост»), который передаёт сигналы с посадочного модуля на Землю. Queqiao был запущен в мае 2018-го года, а Chang’e-4 достиг поверхности Луны в январе 2019-го. «Это была первая мягкая посадка на обратной стороне Луны», — говорит Бернард Фоинг, исполнительный директор International Рабочая группа по исследованию Луны и планетолог из VU Amsterdam. «Это был огромный успех.»

Чанъэ-4 и Цэцяо имеют у себя на борту радиоантенны, однако единственная антенна Chang’e-4 заблокирована радиочастотными помехами (RFI), исходящими от электроники посадочного модуля. Именно поэтому будущие космические аппараты, рассчитанные на исследования тёмного прошлого Вселенной будут иметь дополнительную защиту, чтобы минимизировать радиопомехи. Также предполагается, что такие аппараты смогут развернуть несколько антенн на десятки километров на лунной поверхности.

Следующий шаг для изучения дальней астрономии начнётся с запуска ROLSES (радиоволновые наблюдения на лунной поверхности фотоэлектронной оболочки) в октябре этого года. ROLSES отправится на Луну в составе посадочного модуля частной разработки, лицензированного NASA в рамках программы космического агентства Commercial Lunar Payload Services. Несмотря на то, что аппарат совершит посадку на видимой стороне Луны, задачей ROLSES будет идентификация радиосигналов на обратной стороне нашей спутницы. «Это реально», — говорит Бёрнс, член команды ROLSES. «Я работаю над этим 35 лет. Это действительно происходит».

Читайте также:  Название грунта с луны

NASA eyes moon’s dark side for astronomy, new telescopes — UPI.com

Ещё одна миссия по изучению радиочастотных помех на Луне — эксперимент по изучению электромагнетизма на поверхности Луны (LuSEE) — планируется запустить к 2024 году. «LuSEE уходит в дальнюю зону», — говорит Бёрнс. «Он разместится в ударном кратере Шрёдингера». Посадочный модуль, несущий LuSEE, будет также иметь другую полезную нагрузку: DAPPER (Dark Ages Polarimeter Pathfinder), телескоп для обнаружения 21-сантиметрового сигнала космических тёмных веков. «DAPPER изначально проектировался как орбитальный аппарат вокруг Луны, но он может работать и на этом посадочном модуле», — говорит Бёрнс. «NASA профинансировало нашу работу над концепцией миссии DAPPER. Мы будем готовы к работе».

Несмотря на все вышеперечисленные проекты, у астрономов есть ещё более амбициозные планы. Идея заключается в следующем: развёртывание антенных решёток на поверхности Луны. Эти решётки, которые объединяют сигналы от отдельных антенн, разнесённых на большие расстояния, действуют как телескопы с разрешением, намного большим, чем это было бы возможно с одной антенной, и могут эффективно обнаруживать источники в небе.

Сюэлей Чен из Национальной астрономической обсерватории Китайской академии наук считает, что в ближайшем будущем орбита Луны является лучшим местом для создания группировок антенн на различных космических аппаратах. Антенны на нескольких спутниках могут быть объединены в массив, который будет проводить наблюдения, когда все аппараты находятся на обратной стороне. «Это небольшой эксперимент с умеренными затратами, и мы могли бы выполнить его с помощью современных технологий», — говорит Чен.

Предполагается, что флот из 5 – 8 спутников будет сформирован в тщательно выстроенную группу. Один из спутников — базовый, на котором будет размещена основная электроника и аппаратура для приёма и объединения сигналов от других спутников и передачи их на Землю. «Мы хотим, чтобы они были выпущены как сборка, в будущем же они будут запускаться один за другим», — говорит Чен.

Размещение такого массива антенн на обратной стороне Луны будет намного сложнее по многим причинам. Во-первых, из-за пересечённой местности — огромного количества неровностей, впадин и возвышенностей. Во-вторых, из-за очень высоких перепадов температур, которые должен выдерживать сам аппарат и все его приборы. Чтобы подготовиться к такой миссии, команда Фоинга планирует протестировать развёртывание радиоантенн с помощью роботов-вездеходов, разработанных Германским аэрокосмическим центром. Испытания состоятся в июне на склонах вулкана Этна, действующего вулкана на Сицилии, который сыграет роль лунной поверхности. Учёные будут управлять вездеходами удалённо: каждый из них будет везти по 4 антенны. «Мы разместим их в различных конфигурациях, чтобы показать, что сможем сделать это в будущем на Луне», — говорит Фоинг.

The History and Future of Telescopes on the Moon | Astronomy.com

Есть и другой способ разместить массив антенн на обратной стороне Луны – просто сбросить их с орбитального модуля на поверхность. Адами и его коллеги работают над одной из таких идей: низкочастотный интерферометр, предназначенный для точного измерения характеристик радиоизлучения, который включает 128 фрактальных «мини-станций». Каждая станция имеет восемь плеч, и каждое плечо объединяет 16 спиральных антенн. «Я считаю, что антенны могут отделиться от спутника и приземлиться в разных частях лунной поверхности», — говорит Адами.

Такой проект требует минимального количества подвижных частей в конструкции антенны. Поэтому команда придумала печатать эти антенны в виде плоских листов, которые будут принимать окончательную форму после посадки на лунную поверхность. «Вы сможете печатать антенны так же быстро, как печатаете газеты. Мы тестируем эту технологию последние четыре или пять лет», — говорит Адами. «Мы находимся в процессе создания прототипа таких спиральных антенн». В качестве следующего шага, добавляет он, учёные должны спроектировать мини-станцию и сбросить её с дрона в отдалённых районах, вроде засушливого региона Западной Австралии, чтобы посмотреть, развернётся ли она.

В то же время Бёрнс возглавляет финансируемое NASA концептуальное исследование по созданию ещё одного лунного радиотелескопа, удачно названного FARSIDE (Дальний массив для радионаучных исследований тёмных веков и экзопланет, буквально ДАЛЬНЯЯ СТОРОНА — прим.ред.). Объединившись с Лабораторией реактивного движения NASA, учёные планируют посадить на Луну полезную нагрузку, которая будет состоять из 4-х вездеходов и 256-ти антенн весом в 1,5 тонны. Аппараты должны будут развернуть антенны в виде лепестков диаметром в 10 километров. «Мы вполне можем сделать это с помощью современных технологий!». — говорит Бёрнс.

Идея создания обсерватории на Луне уже до конца этого десятилетия выглядит вполне правдоподобной. Будем с нетерпением ждать испытаний, запусков, и, конечно, первых открытий!

Это перевод статьи из журнала Scientific American

Источник

Adblock
detector