Меню

Кто тормозит развитие космоса

Астрофорум

Меню навигации

Пользовательские ссылки

Информация о пользователе

Почему остановилось развитие космонавтики.

Сообщений 1 страница 7 из 7

Поделиться12014-12-01 07:10:56

  • Автор: dilettant
  • Старожил
  • Зарегистрирован : 2014-04-25
  • Приглашений: 0
  • Сообщений: 558
  • Уважение: [+5/-1]
  • Провел на форуме:
    5 дней 13 часов
  • Последний визит:
    2020-01-06 17:08:47

Ошибки фантастов или почему остановилась космонавтика
Весь двадцатый век фантасты много и талантливо писали об освоении космоса. Герои «Хиуса» подарили человечеству богатства Урановой Голконды, пилот Пиркс работал капитаном космических сухогрузов, по Солнечной системе ходили лидер-контейнероносцы и балкер-трампы, и я уж не говорю про всякую мистику путешествий к таинственным монолитам.
Однако 21 век не оправдал надежд. Человечество робко стоит в прихожей Космоса, не выбравшись на постоянной основе дальше земной орбиты. Почему так получилось и на что надеяться тем, кто хотел бы читать в новостях про повышение урожайности марсианских яблонь?
Скрипач не нужен
Первый парадокс, с которым мы столкнулись — человек не самый подходящий субъект для исследования космоса. Писатели-фантасты, которые придумывали космические экспедиции, могли опираться только на исторический опыт первопроходцев Земли — мореплавателей, полярников, первых авиаторов. Действительно, чем, вроде бы, покорение Марса будет отличаться от покорения Южного полюса?
И там и там непригодная для жизни без предварительной подготовки среда, нужно везти с собой припасы, и за пределы корабля или дома нельзя выйти без надевания специального снаряжения. Но фантасты и футурологи не смогли предсказать развитие электроники и робототехники, и роботы-исследователи обычно описывались в анекдотическом ключе:
«Мне пришлось на полчаса оторваться от письма и выслушать сетования моего соседа, кибернетиста Щербакова. Ты, вероятно, знаешь, что к северу от ракетодрома идет строительство грандиозного подземного комбината по переработке урана и трансуранидов. Люди работают в шесть смен. Роботы — круглые сутки; замечательные машины, последнее слово практической кибернетики. Но, как говорят японцы, обезьяна тоже падает с дерева. Сейчас ко мне пришел Щербаков, злой, как черт, и сообщил, что банда этих механических идиотов (его собственные слова) сегодня ночью растащила один из крупных складов руды, приняв его, очевидно, за необычайно богатое месторождение. Программы у роботов были разные, поэтому к утру часть склада оказалась в пакгаузах ракетодрома, часть — у входа в геологическое управление, а часть вообще неизвестно где. Поиски продолжаются.»
Но никто из известных авторов не догадался, что робот в освоении космоса имеет массу преимуществ перед человеком:
В отличие от человека, робот нуждается только в электропитании и обеспечении теплового баланса. Не надо тащить с собой десятки тонн оранжерей, еды, воды, кислорода, одежды и средств гигиены, лекарств и прочего.
Робота можно отправить в одну сторону, без возвращения.
Робот способен работать годами. Опыт «Вояджеров», марсоходов или «Кассини» говорит о том, что сейчас правильнее говорить уже не о годах, а десятилетиях.
Робот способен работать годами в условиях, которые смертельны для человека. Зонд «Галилео» получил дозу в 25 раз превышающую смертельную для человека и после этого работал на орбите 8 лет.
В результате получилось так, что только роботы массой в несколько тонн вписались в технические возможности человечества отправить их к другим планетам за приемлемые деньги и стали единственным на сегодня способом удовлетворения научного любопытства и получения красивых фотографий.
Мы живем в логистической кривой
Вторая ошибка фантастов состояла в том, что они прогнозировали линейное или даже экспоненциальное развитие космонавтики. Хотя ещё в 1838 году было открыто такое явление как логистическая кривая. Что это за страшный зверь? Для примера возьмем историю авиации:
1900-е. Первые неуклюжие этажерки, первые рекорды — полеты на несколько километров с одним пассажиром.
1910-е. Первые разведчики, истребители, бомбардировщики, почтовые и пассажирские самолёты.
1920-1930-е. Освоение полётов ночью, первые трансконтинентальные перелеты.
1940-е. Авиация — серьезная военная и транспортная сила.
1950-е. Реактивные двигатели дают новый толчок развитию авиации — новые скорости, дальности и высоты, ещё больше пассажиров.
1960-70е. Первые сверхзвуковые и широкофюзеляжные пассажирские самолёты, авиация качественно более доступна.
1980-90е. Торможение. Разработка все дороже, фирмы-разработчики объединяются в гигантские компании. А самолёты все больше похожи друг на друга.
2000-е. Предел. Два гиганта «Боинг» и «Эйрбас» делают внешне одинаковые машины, сверхзвуковые пассажирские самолёты вообще вымерли.
Если перевести эти достижения в числа, получится вот такая вот картинка:

В космонавтике ситуация совершенно такая же:

Для наглядности на график S-кривой можно наложить график расходов на достижение этого уровня:

И печаль нашего «сегодня» состоит в том, что в космонавтике на существующих технологиях мы близки к уровню насыщения. Технически можно слетать в пилотируемом варианте на Луну и даже Марс, но как-то денег жалко.
Клади КЦ — получишь гравицапу
Следующий печальный аспект, тормозящий рывок в космос — пока не обнаружено что-то очень ценное, ради чего стоит тратить деньги на освоение космоса дальше земной орбиты. Обратите внимание, что на околоземной орбите сейчас находится масса коммерческих спутников — связи, ТВ и Интернета, метеорологических, картографических. И у всех у них есть осязаемая, выраженная в деньгах польза. А какая польза от пилотируемой программы полётов на Луну? Вот официальный список результатов лунной программы США стоимостью примерно $170 миллиардов (в ценах 2005 года):
Луна — не первичный объект, это планета земной группы, со своей эволюцией и внутренним строением, аналогичным Земле.
Луна древняя и хранит историю первых миллиардов лет эволюции планет земной группы.
Самые молодые лунные скалы примерно такого же возраста, как самые древние земные. Следы самых ранних процессов и событий, которые, возможно, влияли на Луну и Землю, могут быть найдены сейчас только на Луне.
Луна и Земля генетически связаны и сформированы из различных пропорций общего набора материалов.
Луна безжизненна и не содержит живых организмов или органических веществ местного происхождения.
Лунные скалы произошли от высокотемпературных процессов без участия воды. Они делятся на три типа: базальты, анортозиты и брекчии.
Очень давно Луна была расплавлена на огромную глубину и сформировала океан магмы. Лунные горы содержат остатки ранних скал низкой плотности, которые плавали на поверхности этого океана.
Океан магмы был сформирован серией ударов огромных астероидов, которые сформировали бассейны, заполненные потоками лавы.
Луна несколько асимметрична, возможно, из-за влияния Земли.
Поверхность Луны покрыта кусками скал и пылью. Это называется лунным реголитом и содержит уникальную радиационную историю Солнца, что важно для понимания изменения климата на Земле.
Это всё очень интересно (никаких шуток), но все эти знания обладают непоправимым недостатком — их нельзя намазать на хлеб, залить в бензобак или построить из них дом. Если бы на просторах космоса был бы обнаружен некий «элериум», «тибериум» или иной шишдостаниум, который можно было бы использовать как:
Экономически выгодный источник энергии.
Составной элемент производства чего-нибудь ценного и нужного.
Еду/лекарство/витамин принципиально нового качества.
Предмет роскоши или источник удовольствия.
Если бы он также рос только на Марсе или в поясе астероидов (и не воспроизводился на Земле) и мог быть добыт только человеком (чтобы хитрое человечество не отправило более дешевых и неприхотливых роботов), то тогда бы именно пилотируемое освоение космоса получило бы бесценный стимул. А в отсутствие него в пессимистическом сценарии в 2020-х годах человечество может лишиться постоянного присутствия даже на околоземной орбите — на фоне побитых политиками горшков международного сотрудничества налогоплательщики могут спросить: «А зачем нам новая станция после МКС?»
Проклятие формулы Циолковского
Вот она, Немезида космонавтики:

Читайте также:  Тайны мира планеты космоса

Здесь:
V — конечная скорость ракеты.
I — удельный импульс двигателя (сколько секунд двигатель на 1 килограмме топлива сможет создавать тягу 1 Ньютон)
M1 — начальная масса ракеты.
M2 — конечная масса ракеты.
V для случая полных баков будет запасом характеристической скорости, т.е., тем запасом скорости, которым мы можем разгоняться/тормозиться при необходимости. Это также называют запасом delta-V (дельта означает изменение, т.е. это запас изменения скорости).
В чем здесь проблема? Возьмем карту требуемых изменений скорости для Солнечной системы:

Представим теперь, что мы хотим слетать на Марс и обратно. Это составит:
9400 м/с — старт с Земли.
3210 м/с — уход с орбиты Земли.
1060 м/с — перехват Марса.
0 м/с — выход на низкую орбиту Марса (белый треугольник означает возможность торможения об атмосферу).
0 м/с — посадка на Марсе (тормозим об атмосферу).
3800 м/с — старт с Марса.
1440 м/с — разгон с орбиты Марса.
1060 м/с — перехват Земли.
0 м/с — выход на низкую орбиту Земли (тормозим об атмосферу).
0 м/с — посадка на Землю (тормозим об атмосферу).
В итоге получается красивая цифра 19970 м/с, которую мы округляем до 20 000 м/с. Пусть ракета у нас будет идеальная, и объем топлива никак не влияет на её массу (баки, трубопроводы ничего не весят). Попробуем рассчитать зависимость начальной массы ракеты от конечной массы и удельного импульса. Преобразуя формулу Циолковского, получим:
M1=eV/I*M2
Воспользуемся бесплатным математическим пакетом Scilab. Конечную массу возьмем в диапазоне 10-1000 тонн, удельный импульс будет меняться от 2000 м/с (химические двигатели на гидразине) до 200 000 м/с (теоретическая оценка максимального импульса ЭРД на сегодня). Сразу скажу, что для максимальной массы и минимального импульса будет очень большое значение (22 миллиона тонн), поэтому шкала отображения будет логарифмической.
[m2 I]=meshgrid(10:50:1000,2000:5000:200000);
m1=log(exp(20000*I.^-1).*m2);
surf(m2,I,m1)

Этот красивый график, по сути, наглядный приговор химическим двигателям. Это не новость — на химических двигателях, как это прекрасно показывает практика, можно нормально запускать небольшие зонды, но даже на Луну слетать с экипажем уже несколько затруднительно.
Облегчим себе условия. Во-первых, допустим, что мы стартуем уже с орбиты Земли, и вместо 20 км/с нам понадобится 10. Во-вторых, обрежем «хвост» неэффективных химических двигателей, поставив минимальным значением I 4400 м/с (УИ водородного двигателя Спейс шаттла RS-25):
[m2 I]=meshgrid(10:50:1000,4400:5000:200000);
m1=log(exp(10000*I.^-1).*m2);
surf(m2,I,m1)
Логарифмическая шкала:

Откажемся совсем от химических двигателей. Ядерный двигатель NERVA имел УИ 9000 секунд. Пересчитаем:
[m2 I]=meshgrid(10:50:1000,9000:5000:200000);
m1=exp(10000*I.^-1).*m2;
surf(m2,I,m1)
Линейная шкала:

Почему я повторяю эти однообразные графики? Дело в том, что плоский участок, обозначенный как «повод для оптимизма» показывает, что, когда появятся двигатели с УИ больше 50000 м/с, в пределах Солнечной системы станет возможно более-менее сносно летать без кораблей стартовой массой в миллионы тонн. А ЭРД, которые есть уже сейчас, имеют УИ 25000-30000 м/с (например, СПД 2300).
Впрочем, необходимо понимать, что повод для оптимизма весьма сдержанный. Во-первых, эти тысячи тонн надо доставить на орбиту Земли (а это крайне непросто). Во-вторых, существующие ЭРД имеют небольшую тягу, и, чтобы разгоняться с подходящим ускорением, надо ставить многомегаваттные реакторы.
Построим ещё один интересный график. Пусть нам известна конечная масса — 1000 тонн. Построим зависимость начальной массы от удельного импульса и конечной скорости:
[V I]=meshgrid(10000:2000:100000,50000:5000:200000);
m1=exp(V.*(I.^-1))*1000;
surf(V,I,m1)

Читайте также:  Рисуем космос с мамой

Этот график интересен тем, что это в каком-то смысле взгляд в более далекое будущее человечества. Если мы захотим комфортного и быстрого перелета по Солнечной системе, то придётся выйти ещё на порядок выше в освоении удельного импульса — понадобятся двигатели с УИ в несколько сотен тысяч метров в секунду.
Здесь рыбы нет
Человечество отличается хитростью и изобретательностью. Поэтому множество идей было придумано для того, чтобы облегчить доступ в космос. Один из важнейших параметров, характеризующих тот барьер, который мы хотим перепрыгнуть — это цена выведения килограмма на орбиту. Сейчас, по различным оценкам (из Вики этот столбец убрали, вот, например, другой источник) для различных ракет-носителей, эта цена находится в диапазоне $4000-$13000 за килограмм на низкую околоземную орбиту. Что пытались придумать для того, чтобы проще, легче и дешевле выбраться хотя бы на околоземную орбиту?
Многоразовые системы. Исторически эта идея уже успела один раз провалиться в программе «Спейс шаттл». Сейчас этим занимается Элон Маск, планирующий сажать первую ступень. Хочется пожелать ему всяческих успехов, но на основании прошлого провала не думаю, что это будет качественный прорыв. В лучшем случае, стоимость упадет на несколько процентов.
Single Stage to Orbit. Не вышла за пределы проектов, несмотря на неоднократные попытки.
Воздушный старт. Есть успешный проект для небольшой полезной нагрузки, но не масштабируется под тяжелые грузы.
Безракетный космический запуск. Придумано очень много проектов, но все они имеют фатальный недостаток — требуются астрономические инвестиции, которые никак нельзя «отбить» без полного завершения проекта. Пока космический лифт, фонтан или масс-драйвер не будет полностью построен и запущен, прибыли от него никакой.
Чем сердце успокоится
Чем можно поднять настроение после этих печальных размышлений? У меня есть два аргумента — один абстрактный и фундаментальный, другой более конкретный.
Во-первых, прогресс в целом — это не одна S-кривая, а множество их, что образует вот такую вот оптимистичную картинку:

В истории авиации можно выделить, например:

И, наверняка, мы с вами стоим в похожей точке развития космонавтики. Да, сейчас наблюдается некоторый застой, и даже возможен откат назад, но человечество головами лучших своих представителей пробивает стену познания, и где-то, ещё не замеченные, пробиваются ростки нового будущего.
Второй аргумент — это идущие без особого ажиотажа новости о разработке атомного реактора для транспортно-энергетического модуля:

Источник

Шесть космических проблем освоения космоса

Человечество ведет свое начало из Африки. Но мы не остались там, не все из нас — тысячи лет наши предки расселялись по континенту, а после покинули его. И когда они пришли к морю, то построили лодки и поплыли через огромные расстояния к островам, о существовании которых знать не могли. Почему? Возможно, по той же причине мы смотрим на Луну и на звезды и задаемся вопросом: а что там? Можем ли мы туда попасть? Ведь таковы мы, люди.

Космос, конечно, бесконечно более враждебный для людей, чем поверхность моря; покинуть земную гравитацию сложнее и дороже, чем оттолкнуться от берега. Те первые лодки были передовыми технологиями своего времени. Мореплаватели тщательно планировали свои дорогие, опасные путешествия, и многие из них погибли, пытаясь выяснить, что там за горизонтом. Почему мы тогда продолжаем?

Можно было бы поговорить о бесчисленных технологиях, от небольших продуктов для удобства до открытий, которые позволили предотвратить массу смертельных случаев или спасти кучу жизней больных и раненых.

Можно было бы поговорить о том, что не стоит нам всем отсиживаться на одной планетке, ожидая хорошего удара метеорита, чтобы присоединиться к нелетающим динозаврам. И вы заметили, как меняется погода?

Можно было бы поговорить о том, что всем нам легко и приятно работать над проектом, который не включает убийство себе подобных, который помогает нам понять нашу родную планету, искать способы жить и, что особенно важно, выживать на ней.

Можно было бы поговорить о том, что убраться из Солнечной системы подальше — весьма неплохой план, если человечеству повезет выжить в следующие 5,5 миллиарда лет и Солнце расширится достаточно, чтобы поджарить Землю.

Можно было бы поговорить обо всем этом: о причинах, по которым мы должны найти способ поселиться подальше от этой планеты, построить космические станции и лунные базы, города на Марсе и поселения на спутниках Юпитера. Все эти причины приведут нас к тому, что мы посмотрим на звезды за пределами нашего Солнца и скажем: можем ли мы добраться туда? Будем ли?

Это огромный, сложный, почти невозможный проект. Но когда это останавливало людей? Мы родились на Земле. Останемся ли мы здесь? Нет, конечно.

Проблема: взлет. Преодолеть гравитацию

Это выливается в серьезный «упс» в денежном эквиваленте. Чтобы просто запустить марсоход «Кьюриосити», понадобилось 200 миллионов долларов, одна десятая бюджета миссии, и любой экипаж миссии будет отягощен оборудованием, необходимым для поддержания жизни. Композитные материалы вроде сплавов экзотических металлов могут снизить вес; добавьте к ним более эффективное и мощное топливо и получите нужное ускорение.

Читайте также:  Исследование космоса ссср факты 4 класс окружающий мир интересные 2 3 факта

Но лучшим способом сэкономить денег будет возможность повторного использования ракеты. «Чем выше число рейсов, тем выше будет экономическая отдача, — говорит Лес Джонсон, технический ассистент Advanced Concepts Office NASA. — Это путь к резкому снижению стоимости». SpaceX пытается сделать свою ракету Falcon 9, к примеру, многоразовой. Чем чаще вы летаете в космос, тем дешевле это выходит.

Проблема: тяга. Мы слишком медленные

Проблема: космический мусор. Там, наверху — минное поле

Поздравляем! Вы успешно запустили ракету на орбиту. Но прежде чем вы прорветесь во внешний космос, к вам с тыла зайдет парочка старых спутников, изображающих кометы, и попытается протаранить топливный бак. И нет больше ракеты.

Это проблема космического мусора, и она весьма актуальна. Американская сеть космического наблюдения смотрит за 17 000 объектов — каждый размером с футбольный мяч — которые носятся вокруг Земли на скорости свыше 35 000 км/ч; если считать с кусками до 10 сантиметров в диаметре, обломков будет свыше 500 000. Крышки от фотоаппаратов, пятна краски — все это может создать пробоину в критической системе.

Мощные щиты — слои металла и кевлара — могут защитить от крошечных кусочков, но ничто не спасет вас от целого спутника. 4000 таких вращается вокруг Земли, большая часть из них уже отработали свое. Центр управления полетами выбирает наименее опасные маршруты, но отслеживание не идеально.

Проблема: навигация. В космосе нет GPS

Deep Space Network, коллекция антенн в Калифорнии, Австралии и Испании — это единственный инструмент навигации в космосе. Начиная студенческими зондами и заканчивая «Новыми горизонтами», летящим через пояс Койпера, все полагается на работу этой сети. Сверхточные атомные часы определяют, сколько необходимо сигналу, чтобы добраться от сети до космического аппарата и обратно, и навигаторы используют это для определения положения аппарата.

Но по мере роста числа миссий, сеть становится перегруженной. Коммутатор часто забит. NASA спешно работает, чтобы облегчить нагрузку. Атомные часы на самих аппаратах сократят время передачи вдвое, позволив определять расстояния с помощью односторонней связи. Лазеры с повышенной пропускной способностью смогут обрабатывать большие пакеты данных, вроде фотографий или видео.

Проблема: космос большой. Варп-двигателей пока не существует

Самый быстрый объект, который люди когда-либо строили, это зонд Helios 2. Сейчас он мертв, но если бы звук мог распространяться в космосе, вы услышали бы, как он свистит, проносясь мимо Солнца на скорости свыше 252 000 км/ч. Это в 100 раз быстрее пули, но даже двигаясь на такой скорости, вам потребовалось бы 19 000 лет, чтобы достичь ближайшего соседа Земли по звездам. Никто пока даже и не думает отправляться так далеко, потому что единственное, что можно встретить за такое время, — смерть от старости.

Чтобы победить время, потребуется много энергии. Возможно, придется разрабатывать Юпитер в поисках гелия-3 для поддержки ядерного синтеза — при условии, что вы построили нормальные термоядерные двигатели. Аннигиляция вещества и антивещества даст больший выхлоп, но контролировать этот процесс весьма сложно. «Вряд ли вы стали бы делать это на Земле, — говорит Лес Джонсон, работающий над сумасшедшими космическими идеями. — В космосе — да, так что если что-то пойдет не так, вы не уничтожите континент». Как насчет солнечной энергии? Все, что нужно, это парус размером с небольшое государство.

Впрочем, легко сказать, но трудно сделать. Человечеству потребуется несколько эйнштейнов, работающих в масштабах Большого адронного коллайдера, чтобы увязать все теоретические выкладки. Вполне возможно, что однажды мы сделаем открытие, которое все изменит. Но никто не будет делать ставку на случайность. Потому что моменты открытия требуют финансирования. Но лишних денег у физиков сферы элементарных частиц и у NASA нет.

Проблема: Земля только одна. Не смело вперед, а смело остаемся

Пару десятилетий назад фантаст Ким Стэнли Робинсон набросал будущую утопию на Марсе, построенную учеными перенаселенной и задыхающейся Земли. Его трилогия о Марсе показала убедительный повод колонизации Солнечной системы. Но на самом деле зачем, если не ради науки, нам двигаться в космос?

Жажда исследований таится у нас в душе — о таком манифесте многие из нас слышали и не раз. Но ученые давно выросли из шинели мореплавателей. «Терминология первооткрывателей была популярна 20-30 лет назад, — говорит Хайди Хаммел, которая занимается расстановкой приоритетов исследований в NASA. С тех пор, как зонд «Новые горизонты» пролетел мимо Плутона в прошлом июле, «мы исследовали каждый образец среды в Солнечной системе хотя бы раз», говорит она. Люди, конечно, могут копаться в песочнице и изучать геологию далеких миров, но поскольку этим занимаются роботы, нет нужды.

Конечно, в такой перспективе нет ничего хорошего. «Появляется нравственная угроза, — говорит Робинсон. — Люди думают, что если мы испоганили Землю, мы всегда можем отправиться к Марсу или к звездам. Это губительно». Насколько нам известно, Земля остается единственным пригодным для жизни местом во Вселенной. Если мы покинем эту планету, сделать это придется не по прихоти, а по необходимости.

Источник

Adblock
detector