Меню

Кто может преобразовать энергию солнца

Способы преобразования солнечной энергии и их КПД

Излучение Солнца все время несет к Земле энергию. Это, по существу, электромагнитная энергия. Спектр электромагнитного излучения Солнца лежит в широком диапазоне: от радиоволн до рентгеновских лучей. Максимум его интенсивности приходится на видимый свет, а именно — на желто-зеленую часть спектра. В целом можно сказать, что энергия солнечного излучения управляет жизнью на Земле, климатом и погодой на нашей планете — вся живая природа на Земле обязана своим существованием Солнцу.

Дело в том, что от Солнца — к верхним слоям земной атмосферы непрерывно поступает в форме излучения мощность порядка 174 петаватт (пета — 10 в 15 степени). При этом 16% поступающей энергии поглощается верхними слоями атмосферы, а 6% — отражается от нее. В зависимости от погодных условий, в средних слоях атмосферы также происходит отражение до 20%, а поглощается около 3% приходящей от Солнца энергии.

Таким образом, наша атмосфера рассеивает и фильтрует значительную часть спектра, пропуская, однако, к поверхности земли немалую его долю в форме инфракрасного и немного ультрафиолетового. В результате мы можем наблюдать круговорот воды в природе, фотосинтез растений, и имеем среднюю температуру земной поверхности около 14°C.

Технология, позволяющая человечеству использовать данную энергию практически и осознанно, называется солнечной энергетикой. И такое положение не лишено здравых оснований, ведь по оценкам ученых потенциал энергии Солнца, которая может быть принята на поверхности земли и преобразована в полезную для человека форму, составляет на сегодняшний день в максимуме почти 49,9 эксаджоуль в год (экса — 10 в 18 степени), что в 10000 превосходит нынешние потребности человечества.

Даже в Германии, где климат не особо солнечный, энергия, которую можно было бы в идеале получить от Солнца, в 100 крат превзошла бы потребности всей страны. А в Австрии на 1 квадратный метр поверхности земли приходится до 1480 кВт ⋅ ч в год. И лишь 50% этой энергии принимается в стране солнечными концентраторами, осуществляющими нагрев теплоносителя в своем фокусе.

Далее давайте рассмотрим наиболее приемлемые на сегодняшний день способы преобразования солнечной энергии, и оценим их коэффициент полезного действия (КПД).

Солнечный коллектор

Солнечные коллекторы, хотя и относятся к низкотемпературным установкам, тем не менее они позволяют добывать примерно 1250 кВт ⋅ ч на квадратный метр энергии в год. Энергия получается здесь в форме тепла, пригодного для промышленного отопления и обеспечения горячего водоснабжения.

Практически установка преобразует энергию, даваемую видимым светом и ближним инфракрасным излучением, — в тепло, поскольку разогревается здесь теплоноситель — вода. При отсутствии забора тепла (застое) коллекторы такого плана способны нагреть воду до 200°C.

Установка имеет покрытие из специального абсорбера, хорошо поглощающего солнечное излучение, и передающего тепло теплопроводящей системе. Селективное покрытие обычно представляет собой черный никель или напыление оксида титана. Среднестатистический КПД таких установок 50%.

Параболоцилиндрическое зеркало

Установки на базе параболоцилиндрических зеркал относятся к среднетемпературным установкам. Они позволяют получать 375 кВт ⋅ ч на квадратный метр электрической и тепловой энергии в год. В фокусе такой установки располагается трубка (внутри которой теплоноситель — масло) или фотоэлектрический преобразователь. Масло в трубке разогревается здесь до 350°C и даже больше.

Одно параболоцилиндрическое зеркало, из которых набирается крупная электростанция, имеет протяженность до 50 метров. Термальная эффективность параболических концентраторов доходит до 73 % при температуре нагрева теплоносителя 350°C. Средний КПД подобных установок доходит до 20%.

Гелиостатные системы

Гелиостатные системы относятся к высокотемпературным установкам. На них получают 500 кВт ⋅ ч на квадратный метр электрической энергии в год, кроме того гелиостатные установки дают возможность получать и тепловую энергию. Здесь нагревается теплоноситель на основе натрия и газ (двухконтурная система с термической солью). Множество зеркал отражают солнечное излучение, направляя его на емкость с теплоносителем, расположенную на вершине башни. КПД таких систем достигает 20%.

Читайте также:  Сложная структура содержат белок солнце которое излучает

Солнечная батарея

Солнечные батареи относятся к электроэнергетическим установкам, и позволяют получать при помощи фотоэлектрических преобразователей 250 кВт ⋅ ч электроэнергии в год. Их эффективности бывает достаточно чтобы обеспечить электричеством небольшое домашнее хозяйство в солнечном регионе, также небольшие солнечные панели в состоянии снабжать электроэнергией дорожные знаки, осветительные приборы, оросительные системы и т. д.

На сегодняшний день эффективность солнечных батарей оставляет желать лучшего, их средний КПД относительно невысок, около 10%, но технология все время совершенствуется.

Источник

ТОП-3 способа получения солнечной энергии: как получают и используют

Дата публикации: 13 декабря 2018

Солнце — неиссякаемый и общедоступный энергетический источник. Вся поверхность Земли получает от Солнца такое большое количество энергии, что ее хватило бы для удовлетворения всех энергетических нужд населения планеты на миллионы лет вперед. В ясную погоду на один кв.метр Земли поступает в среднем 1000 Ватт. Главная проблема использования этого неиссякаемого источника — неравномерное поступление солнечных лучей: в некоторых регионах можно наслаждаться ясной погодой до 340 дней в году, а в некоторых едва ли наберется и пары десятков безоблачных деньков.

Во что преобразовывают и как добывают солнечную энергию

Солнечная энергетика относится к разряду альтернативной. Она динамично развивается, предлагая новые методы получения энергии от Солнца. На сегодняшний день известны такие способы получения солнечной энергии и ее дальнейшего преобразования:

  • фотовольтаика или фотоэлектрический метод — сбор энергии с помощью фотоэлементов;
  • термовоздушный — когда энергия Солнца преобразуется в воздушную и направляется на турбогенератор;
  • гелиотермальный способ — нагревание лучами поверхности, накапливающей тепловую энергию;
  • «солнечный парус» — одноименное устройство, работающее в безвоздушном пространстве, преобразовывает солнечные лучи в кинетическую энергию;
  • аэростатный метод — солнечное излучение нагревает баллон, где за счет тепла генерируется пар, который и служит для выработки резервной электроэнергии.

Получение энергии от Солнца может быть прямым (через фотоэлементы) или косвенным (с помощью концентрации солнечной энергии как в случае с гелиотермальным способом). Главные преимущества солнечной энергетики — отсутствие вредных выбросов и снижение затрат на оплату электричества. Это стимулирует все большее количество людей и предприятий прибегать к солнечной энергетике как к альтернативе. Активнее всего альтернативная энергетика используется в таких странах, как Германия, Япония и Китай.

ТОП-3: самые популярные способы получения солнечной энергии

Популярность тех или иных способов обуславливается такими факторами, как эффективность, надежность и стоимость технологии:

  1. Использование солнечных панелей (батарей);
  2. Солнечные коллекторы (гелиосистемы);
  3. Гелиотермальные электростанции.

Батареи и модули знакомы всем, кто хоть раз интересовался альтернативным способом получения электричества. Такие панели могут использоваться как в промышленных масштабах, так и для частных нужд. С помощью солнечной батареи можно решить множество задач: зарядить телефон, питать систему автономного освещения, обеспечить электричеством дом или целое поселение. В зависимости от поставленных целей, внутреннее устройство и принцип работы батарей отличаются друг от друга.

Гелиосистемы превращают энергию Солнца в тепловую. Они различаются между собой по типу конструкции и объемам производительности. Так плоские гелиосистемы сохраняют прежние объемы мощности при низкой температуре, зато вакуумные на 40% эффективней в ясную погоду. Любопытно, как использовать эту солнечную энергию в домашних условиях? Гелиосистемы могут быть компактных размеров: их устанавливают прямо в доме, чтобы сэкономить на отоплении и нагреве воды. В промышленных масштабах их используют для сушки сырья или для уменьшения нагрузки на отопительные узлы.

Гелиотермальные электростанции способны обеспечивать электричеством целые города. Их конструкция представляет собой управляемые компьютером зеркала, что ловят лучи и направляют их в центр башни. Под воздействием концентрированной солнечной энергии вода в башне становится паром, что обеспечивает достаточный уровень давления для вращения турбины, которая и вырабатывает электричество. Для сравнения: гелиотермальная электростанция Иванпа Солар вырабатывает столько же электричества, сколько и средняя московская ТЭЦ.

  • Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики
  • Солнечная энергетика захватывает новые стихии
  • Ложка дегтя в бочке с солнечными батареями
  • Какая жизнь без света?
Читайте также:  Тепло от солнца достигает поверхности земли за счет чего

Вам нужно войти, чтобы оставить комментарий.

Источник

Преобразование энергии солнечного света и организмы использующие её

Сегодня мы поговорим об организмах, которые используют в своей жизнедеятельности солнечную энергию. Для этого нужно затронуть такую науку, как биоэнергетика. Она изучает способы преобразования энергии живыми организмами и использование её в процессе жизнедеятельности. В основе биоэнергетики лежит термодинамика. Эта наука описывает механизмы преобразования различных видов энергии друг в друга. В том числе, использование и преобразование различными организмами солнечной энергии. С помощью термодинамики можно полностью описать энергетический механизм процессов, происходящих вокруг нас. Но с помощью термодинамики нельзя понять природу того или иного процесса. В этой статье мы попробуем объяснить механизм использования солнечной энергии живыми организмами.

Как живые организмы получают солнечную энергию?

Для описания преобразования энергии в живых организмах или прочих объектах нашей планеты следует рассмотреть их с точки зрения термодинамики. То есть, системы, обменивающейся энергией с окружающей средой и объектами. Их можно подразделить на следующие системы:

Через некоторое время эти вещества разрушаются и обеспечивают организм энергией. Их продукты распада удаляются из организма. Их место в организме заполняют другие молекулы. При этом целостность структуры организма не нарушается. Такое усвоение и переработка энергии в организме обеспечивает обновление организма. Энергетический обмен необходим для существования всех живых организмов. При остановке процессов преобразования энергии в организме он умирает.

4Н ⇒ Не4 + 2е + hv, где

v ─ длина волны гамма-лучей;

h ─ постоянная Планка.

В дальнейшем, после взаимодействия гамма-излучения и электронов, энергия выделяется в виде фотонов. Эту световую энергию излучает небесное светило.

Солнечная энергия при достижении поверхности нашей планеты улавливается и преобразуется растениями. В них энергия солнца превращается в химическую, которая запасается в виде химических связей. Это связи, которые в молекулах соединяют атомы. Примером может служить синтез глюкозы в растениях. Первая стадия этого преобразования энергии ─ фотосинтез. Растения обеспечивают его с помощью хлорофилла. Этот пигмент обеспечивает превращение лучистой энергии в химическую. Происходит синтез углеводов из H2O и CO2. Это обеспечивает рост растений и передачу энергии на следующую ступень.

Фотосинтез у растений

Здесь стоит дать ответ на часто задаваемый вопрос: «Какой органоид использует энергию солнечного света?». Это хлоропласты, участвующие в процесс фотосинтеза. Они используют её для синтеза из неорганических веществ органических.

В непрерывном потоке энергии заключается суть всего живого. Он постоянно движется между клетками и организмами. На клеточном уровне для преобразования энергии существуют эффективные механизмы. Можно выделить 2 основные структуры, где происходит превращение энергии:

Человек, как и другие живые организмы на планете, пополняет энергетический запас из продуктов. Причём, часть потребляемых продуктов растительного происхождения (яблоки, картофель, огурцы, помидоры), а часть животного (мясо, рыба и другие морепродукты). Животные, которые мы употребляем в пищу, энергию также получают из растений. Поэтому вся получаемая нашим организмом энергия преобразуется из растений. А у них она появляется в результате преобразования солнечной энергии.

По типу получения энергии все организмы можно разделить на две группы:

  • Фототрофы. Черпают энергию из солнечного света;
  • Хемотрофы. Получают энергию во время окислительно-восстановительной реакции.
Читайте также:  Ты рисуешь яркое солнце

Как преобразуется энергия в живых организмах?

Существует 3 основных разновидности энергии, преобразуемой организмами:

  • Преобразование лучистой энергии. Этот вид энергии несёт солнечный свет. В растениях лучистая энергия улавливается пигментом хлорофиллом. В результате фотосинтеза она превращается в химическую энергию. Та, в свою очередь, используется в процессе синтеза кислорода и других реакциях. Солнечный свет несёт в себе кинетическую энергию, а в растениях она превращается в потенциальную. Полученный энергетический запас сохраняется в питательных веществах. К примеру, в углеводах;
  • Преобразование химической энергии. Из углеводов и прочих молекул она превращается в энергию макроэргических фосфатных связей. Эти преобразования проходят в митохондриях.
  • Преобразование энергии макроэргических фосфатных связей. Она расходуется клетками живого организма для совершения разных видов работ (механическая, электрическая, осмотическая и т. д.).

Преобразование энергии макроэргических фосфатных связей

Использование организмами накопленной энергии

В процессе метаболизма организм получает энергетический запас, расходуемый на совершение биологической работы. Это может быть световая, механическая, электрическая, химическая работа. И очень большая часть энергии организм расходует в виде тепла.

Ниже кратко описаны основные типы энергии в организме:

  • Механическая. Характеризует движение макротел, а также механическую работу по их перемещению. Её можно разделить на кинетическую и потенциальную. Первая определяется скоростью передвижения макротел, а вторая ─ их местоположением по отношению друг к другу;
  • Химическая. Определяется взаимодействием атомов в молекуле. Она является энергией электронов, которые двигаются по орбитам молекул и атомов;
  • Электрическая. Это взаимодействие заряженных частиц, которое вызывает их движение в электрическом поле;
  • Осмотическая. Расходуется при передвижении против градиента концентраций молекул вещества;
  • Регуляторная энергия.
  • Тепловая. Определяется хаотическим движением атомов и молекул. Основной характеристикой этого движения является температура. Этот вид энергии является самым обесцененных из всех, перечисленных выше.

r ─ постоянная Больцмана (1,380*10 -16 эрг/град).
Вернуться к содержанию

Как из питательных веществ освобождается энергия?

В процессе извлечения энергии из питательных веществ есть 3 условных этапа;

  • Подготовительный. Этот этап требуется для перевода биополимеров в клетках пищи в мономеры. Эта форма лучше всего подходит для извлечения энергии. Этот процесс (гидролиз) протекает в кишечнике или внутри. Гидролиз идёт с участием лизосом и ферментов цитоплазмы. Энергетическая ценность этого этапа нулевая. На этой стадии высвобождается 1 процент энергетической ценности субстратов, и вся она теряется в виде тепла;
  • На втором этапе частично распадаются мономеры с образованием промежуточных продуктов. Образуются кислоты цикла Кребса и ацетил─КоА. Количество исходных субстратов на этой стадии уменьшается до трёх и высвобождается до 20 процентов энергетического запаса субстратов. Процесс идёт анаэробно, то есть, без доступа кислорода. Энергия частично накапливается в фосфатных связях АТФ, а остаток расходуется в форме тепла. Распад мономеров идёт в гиалоплазме, а остальные процессы ─ в митохондриях;
  • На заключительном этапе происходит распад мономеров до Н2O и СO2 в реакции с участием кислорода. Биологическое окисление происходит с полный высвобождением энергетического запаса. Из 3 трёх метаболитов, которые присутствовали на предыдущем этапе, остаётся лишь H2. Он является универсальным топливом в цепочке дыхания. На этом этапе освобождаются оставшиеся 80 процентов энергетического запаса. Часть энергии выходит в виде тепла, а остальная накапливается в фосфатных связях. Все реакции этого этапа идут в митохондриях.

Схема освобождения энергии из питательных веществ

Высвобождение энергии в живых клетках происходит постепенно. На всех этапах выделения она может накапливаться в химической форме, удобной для клеток вещества. Энергетическое строение клетки включает 3 разных функциональных блока, в которых идут различные процессы:

  • I─процессы (образование субстратов окисления, которые соответствую окислительному ферменту в клетках);
  • Блок S-H2 (субстрат окисления);
  • Процессы H генерации водорода. На выходе получается КН2 (водород с коферментом).

Источник

Adblock
detector