20 век — эпоха космических открытий
Сначала неизбежно идут: мысль, фантазия,
сказка. За ними шествует научный расчет.
И уже в конце концов исполнение венчает
мысль.
Загадочный мир звезд и планет с давних времен притягивал к себе внимание людей. Но ближе и доступнее он стал только с проникновением человека в космос. 20 век можно смело назвать Эпохой Великих космический открытий, ведь именно этому веку принадлежат золотые страницы истории покорения космического пространства.
Начало освоению космоса было положено 4 октября 1957 года. В этот памятный день был выведен на орбиту первый в истории человечества искусственный спутник Земли, запущенный в СССР, полет которого позволил уточнить форму и строение газовой оболочки Земли.
2 января 1959 года стартовала советская автоматическая станция «Луна-1». Это был первый аппарат, который преодолел силы земного притяжения и вырвался на просторы космоса. Не прошло и года, как Советский Союз запустил другую автоматическую станцию, достигшую поверхности Луны.
Следующим значимым событием было 12 апреля 1961 года. В этот исторический день ушел в космос корабль «Восток» с первым в истории человечества летчиком-космонавтом на борту Юрием Алексеевичем Гагариным. Облетев земной шар, он через 1 час 48 минут благополучно приземлился в заданном районе Советского Союза. Это стало сенсацией, нонсенсом. До этого момента многие сомневались, что человек сможет полететь в космос и остаться в живых. Однако полет Юрия Гагарина изменил взгляды скептиков, настроив их на иной лад. Люди, наконец, поняли, что далекое, неизведанное, загадочное космическое пространство может быть покорено и изучено.
В 1963 году другая наша соотечественница, Валентина Терешкова, стала первой женщиной, отправившейся в космос. Своим полетом она убедительно доказала равные возможности женщины в таком трудном и сложном деле, каким является освоение космического пространства.
А спустя два года, в 1965, советский космонавт Алексей Леонов первым в мире совершил выход в открытый космос. И если в списке великих деяний человечества по освоению космического пространства под первым номером стоит полет Юрия Гагарина, то под вторым – именно это событие.
Однако не только СССР принадлежали открытия в области космоса. Еще одной космической сверхдержавой были Соединенные Штаты Америки. Две страны находились в вечном противостоянии, соперничестве за право быть первым. Но, безусловно, СССР всегда был на шаг впереди, долгое время не отдавая лавры первенства Штатам. Тем не менее, это не помешало американским астронавтам Нилу Армстронгу и Эдвину Олдрину в 1969 году первыми высадиться на Луну.
Космические открытия XX века позволили нам хоть ненамного приоткрыть завесу неизвестности и таинственности. Однако до сих пор космос является для нас практически неизведанной областью. Мы не знаем, какие еще тайны он скрывает. Каждый год проводятся новые исследования. И кто знает, чего мы можем достичь, изучая космос? Полет человека на другую планету? Контакт с пришельцами и обнаружение новой расы? Этого никто не может нам сказать, но, несомненно, наука будет двигаться вперед для достижения новых вершин, и когда-нибудь космос раскроется перед нами, перестав быть таким чуждым и пугающим.
Источник
Достижения астрономии XX — начала XXI века
Передовой областью астрономии в XX в. стала астрофизика, изучающая фундаментальные физические процессы в космических телах с необычными физическими условиями.
Прежде всего, это касается экстремально высоких и низких плотностей вещества, мощных гравитационных и магнитных полей, околосветовых скоростей и гигантских энергий взаимодействующих частиц. Астрофизика доказала универсальность физических законов для всех уголков Вселенной и существенно расширила рамки лабораторной физики. В последнее время множество неожиданных находок сделано исследователями Солнечной системы, обнаружены планеты у соседних звезд.
С появлением орбитальных обсерваторий начался стремительный прогресс астрометрии. Астрономы, совершенно лишенные возможности экспериментировать со своими объектами, теперь ставят численные эксперименты на компьютерах. Также без компьютера невозможно теперь представить астрономические наблюдения. С его помощью происходит управление телескопом и приемной аппаратурой, хранятся и обрабатываются результаты наблюдений. Компьютерные сети позволили практически всем желающим включиться в научную работу: сейчас можно получать результаты наблюдений с любой обсерватории мира — наземной или космической — и самостоятельно обрабатывать их. Можно, не выходя из дома, проводить наблюдения на специальных автоматизированных телескопах, которых становится все больше.
Важнейшие открытия в астрономии XX в.
В планетной астрономии:
- построена релятивистская теория движения планет, позволяющая вычислять их положения на многие тысячелетия вперед и назад;
- в общих чертах исследована природа всех планет, а поверхности Луны, Венеры и Марса подвергнуты прямому изучению;
- перестали быть таинственными астероиды и ядра комет, выполнено их прямое зондирование;
- открыты планетные системы у других звезд.
Остались нерешенными многие частные проблемы космогонии (о формировании Луны, образовании колец вокруг планет-гигантов, причине очень медленного и обратного вращения Венеры), а также не построен сценарий возникновения Солнечной системы.
В звездной астрономии:
- создана теория внутреннего строения звёзд; найдены методы изучения звездных недр по вибрациям наружных слоев звезды (гелиосейсмология) и путем регистрации нейтрино, рождающихся в ходе термоядерных реакций;
- в общих чертах построена картина происхождения и эволюции звезд;
- обнаружены взаимные превращения разных сортов нейтрино и доказано, что полный поток нейтрино от Солнца соответствует теоретическому прогнозу, т. е. астрофизическая модель Солнца верна;
- обнаружены и изучены остатки звездной эволюции — белые карлики и теоретически предсказанные нейтронные звезды.
В то же время не создана детальная физическая теория некоторых проявлений звездной активности, не до конца ясны причины взрыва сверхновых звезд, остается не совсем понятным, почему из окрестностей некоторых звезд выбрасываются узкие струи газа.
В галактической и внегалактической астрономии:
- в общих чертах выяснено строение Галактики и ее основных наблюдаемых компонентов;
- изучено строение ядра Галактики, скрытого от нас огромной толщей межзвездного газа и пыли;
- изучено строение основных типов галактик и их скоплений;
- найдены методы измерения расстояний вплоть до самых удаленных объектов Вселенной;
- обнаружено, что скопления галактик распределены не хаотически, а образуют еще более крупномасштабную ячеистую структуру Вселенной.
Пока не решена проблема скрытой массы, состоящая в том, что гравитационное поле галактик и скоплений галактик в несколько раз сильнее, чем это может обеспечить наблюдаемое вещество, нет единой теории формирования галактик, не решены основные проблемы космологии (нет законченной физической теории рождения Вселенной и неясна ее судьба в будущем), не выяснена причина ускоренного расширения Вселенной.
Есть и много других нерешенных вопросов: о существовании жизни на экзопланетах, о природе процессов, способствующих началу формирования звезд, о том, являются ли черные дыры источником энергии активных галактик и квазаров, о времени и механизме формирования галактик, а также о том, будет ли Вселенная расширяться вечно, ускорится ли ее расширение в будущем или сменится коллапсом. Кроме того, сейчас первые шаги делают нейтринная и гравитационно-волновая астрономия, которые могут открыть перед нами новое лицо Вселенной.
Источник
Крупнейшие научные открытия второй половины ХХ — начала XXI века. Освоение космоса.
Крупнейшее из открытий XX в., овладение ядерной энергией, в большой мере использовалось в военных целях. Открытие в начале 1950-х гг. термоядерных реакций (слияния лёгких ядер в более тяжёлые при сверхвысоких температурах) и в СССР и США было обращено на создание водородных бомб. Они были в сотни раз разрушительнее, чем урановые и плутониевые. Первая в мире атомная электростанция (АЭС) была построена в 1954 г. в СССР в Обнинске. Вторая — в 1956 г. в Великобритании. АЭС в начале XXI в. обеспечивают не более 17% мирового производства электроэнергии. Гидроэлектростанции (ГЭС) дают лишь около 10% производства. Большая часть производства электроэнергии обеспечивается за счёт сжигания нефти, угля и газа.
1. Транспорт, космонавтика и новые конструкционные материалы. Продолжалось развитие средств транспорта, сложилась глобальная система транспортных коммуникаций. К началу XXI в. в мире насчитывалось свыше 600 млн автомобилей (около трети из них — в США), их ежегодный выпуск превысил 30 млн штук. На протяжении XX в. постоянно увеличивалась грузоподъёмность судов. В 1970-е гг. появились танкеры водоизмещением более 500 тыс. т. Быстроходность кораблей возросла вдвое. Была значительно усовершенствована система погрузки и разгрузки судов. Благодаря этому объём грузов, перевозимых по морю, за последние 50 лет увеличился в десять раз. С овладением ядерной энергией появились корабли и подводные лодки с атомными силовыми установками, способные годами бороздить морские просторы без захода в порты.
Значительно возросло значение транспортной авиации. В Англии в 1949 г. был создан первый прототип пассажирского реактивного самолёта «Комета». Однако основное применение на авиалиниях нашли советские реактивные самолеты Ту-104 (выпускались с 1955 г.) и американские Боинг-707 (с 1958 г.). В 1970 г. в США был создан гигантский самолёт Боинг-747, способный поднимать на борт до 500 пассажиров. Уже в 1950-х гг. военная авиация освоила сверхзвуковые скорости, а в 1970-е гг. появились и первые пассажирские самолёты, летающие на сверхзвуковых скоростях: советский Ту-144 (1975) и англо-французский «Конкорд» (1976). Правда, впоследствии они себя не оправдали ни по надёжности, ни по рентабельности.
Послевоенное развитие ракетной техники было главным образом подчинено стремлениям СССР и США создать более эффективные средства доставки ядерного оружия, чем бомбардировщики. Первым свои достижения в этой сфере продемонстрировал Советский Союз, запустивший в 1957 г. первый искусственный спутник Земли (США осуществили такой запуск в 1958 г.), а 12 апреля 1961 г. выведший на орбиту вокруг Земли космический корабль с человеком на борту (Ю.А. Гагарин). В 1961 г. в США была принята программа «Аполлон» — пилотируемого полёта на Луну, успешно завершённая в 1969 г. Автоматические космические зонды достигли Венеры, Марса, Юпитера, Сатурна, вышли за пределы Солнечной системы.
Соперничество в космосе позволило значительно повысить надёжность космических аппаратов, удешевить их, что создало условия перехода к систематическому освоению околоземного космического пространства. В СССР и США были разработаны космические аппараты многоразового пользования: американские «шаттлы» и советский «Буран». Орбитальные станции и искусственные спутники Земли стали выполнять не только военные, но и гражданские функции, использоваться для научных экспериментов, астрономических наблюдений, трансляции радио- и телепередач, поддержания связи (первый спутник связи был запущен в 1962 г.), метеорологических наблюдений, геологоразведки и т.д.
Так же, как и автомобилестроение, авиация и космонавтика создали стимул для поиска новых конструкционных материалов. С развитием химии, химической физики, изучающей химические процессы с использованием достижений квантовой механики, кристаллографии стало возможным получать вещества с заранее заданными свойствами, обладающими большой прочностью, стойкостью. Их производство приняло особенно большие масштабы в конце XX в. Только за период с 1980 по 2000 г. удельный вес пластмасс среди потребляемых конструкционных материалов в развитых странах увеличился в среднем в 4-5 раз, достигнув 20%. Развивалась и металлургия, освоившая производство особо прочной легированной стали (с добавками вольфрама, молибдена), титановых сплавов, использующихся в авиации и космонавтике.
2. Биохимия, генетика, медицина. Химия не обошла своим вниманием и сельское хозяйство, где с началом XX в. началось применение минеральных удобрений, увеличивающих плодородие почвы. Во второй половине века широко стали применяться химические методы борьбы с вредителями сельского хозяйства и сорняками (ядохимикаты). Создание веществ, выборочно уничтожающих одни виды растений и безвредных для других, стало возможным благодаря развитию биологии, биохимии. Опыт работ 1920-1930-х гг. по совершенствованию агротехнических приёмов (в частности, Л. Бербанка по селекции семян, совершенствованию сортов культурных растений) в сочетании с удобрениями, пестицидами, совершенствованием технических средств обработки земли позволил с 1930-х по 1990-е гг. в 2-3 раза повысить урожайность многих культур.
Работы в области генетики, исследования механизма наследственности привели к развитию биотехнологий. Генетические исследования в СССР, связанные с именем Н.И. Вавилова, были свёрнуты после того, как генетика была объявлена правящей партией «лженаукой», а те, кто её разрабатывал, подверглись репрессиям. После этого лидерство в этих исследованиях перешло к США. В 1953 г. учёными Кембриджского университета Д. Уотсоном и Ф. Криком была открыта молекула ДНК, несущая в себе программу развития организма. В 1972 г. в Калифорнийском университете исследовались возможности изменения структуры ДНК, что открывало путь к созданию искусственных организмов. Первый патент в этой области за создание методом генной инженерии микроорганизма, ускоряющего переработку сырой нефти, был выдан в 1980 г. американскому учёному А. Чакрабарти. В 1988 г. Гарвардский университет вырастил с помощью генетических манипуляций живую мышь. Началось выведение новых пород животных и растений. Они гораздо лучше, чем базовые виды, приспособлены к неблагоприятным климатическим условиям, обладают иммунитетом ко многим заболеваниям и т.д. В то же время многие учёные высказывают опасения по поводу употребления в пищу генетически модифицированных продуктов. Они считают, что долгосрочные последствия этого непредсказуемы и могут быть опасными для человека.
На пороге XXI в. были открыты возможности клонирования — искусственного выращивания из одной клетки биологического подобия организма донора. Вопросы этичности столь глубокого вмешательства в природные процессы, потенциальной опасности генетических экспериментов, с вмешательством в механизм наследственности, последствия которых не всегда можно предвидеть, обсуждались неоднократно, но это не привело к их прекращению. Во многих странах эксперименты с клонированием человека запрещены.
Углубление знаний о природе живой материи раскрыло возможности трансплантации, то есть пересадки органов, лечения наследственных, обусловленных генетическими факторами заболеваний. Новые возможности перед медициной раскрыли достижения ядерной физики, электроники. В диагностике уже в 1930-е гг. стали использоваться рентгеновские аппараты, электрокардиографы, электроэнцефалографы и т.д., в последней трети века были созданы аппараты искусственной почки, вживляющийся кардиостимулятор и т.д. Новые технологии, в частности использование лазерного скальпеля, расширили возможности хирургии.
3. Электроника и робототехника. Огромное влияние на облик мировой цивилизации оказали достижения в области электроники. Наибольшее прикладное значение имело изобретение ЭВМ — электронно-вычислительных машин, то есть компьютеров. Первые ЭВМ появились после Второй мировой войны. В них использовались такие же диоды и триоды, как в ламповых радиоприёмниках. Одна из таких машин, построенных в США в 1946 г., ЭНИАК, весила 30 т и занимала площадь 150 кв. м, в ней было использовано 18 тыс. электронных ламп. Но, несмотря на огромные размеры, на ней можно было проводить лишь простые вычисления, доступные ныне каждому владельцу встроенного в мобильный телефон калькулятора.
Второе поколение ЭВМ было создано после изобретения транзисторов (полупроводников) в конце 1940-х гг., заменивших электронные лампы. Транзисторы нашли широкое применение в бытовой электронике (радиоприёмниках, телевизорах, магнитофонах), с их миниатюризацией удалось увеличить объёмы памяти и быстродействие ЭВМ.
Третье поколение ЭВМ развилось после создания так называемых интегральных схем, плат, на которых размещалось в 1960-е гг. несколько десятков компонентов, преобразующих и обрабатывающих информацию. С совершенствованием технологии в 1970-е гг. на одной плате можно было поместить десятки тысяч компонентов. ЭВМ на интегральных схемах включали в себя миллионы полупроводников, их быстродействие достигло 100 млн операций в секунду.
Четвёртое поколение ЭВМ было создано с изобретением в 1971 г. микропроцессора на кремниевом кристалле — чипе, размером менее 1 кв. см, заменяющем тысячи полупроводников. Один такой кристалл мог хранить до 5 млн бит информации, что позволило перейти к созданию портативных компьютеров, предназначенных для индивидуальных пользователей. Современные ЭВМ способны воспринимать и воспроизводить не только числовую информацию, но и снимки, графики, речевые сигналы, вести диалог с человеком на базе заложенного программного обеспечения.
Повсеместное распространение компьютеров, создание в фирмах, промышленных, коммерческих, научных центрах, государственных структурах банков данных компьютеризированной информации обеспечило новые возможности связи — создания локальных, а затем и глобальных компьютерных сетей связи. Самой известной из них является Интернет. Они позволяют практически моментально получать и передавать любую информацию, вести двусторонние и многосторонние диалоги с другими пользователями компьютеров. Предполагается, что будущее поколение компьютеров будет иметь в качестве материального носителя памяти уже не кристаллы, а молекулы полимерного или биологически активного вещества (биочипы), что поставит в практическую плоскость создание искусственного интеллекта, способного к самопрограммированию.
С начала 1960-х гг. развитие компьютерных технологий позволило начать создание промышленных роботов, число которых к началу XXI в. в мире достигло 720 тыс. Большая их часть приходится на Японию, США и Германию. Распространение робототехники раскрыло огромные возможности совершенствования производственного процесса. Поскольку функции наёмного работника, благодаря конвейерному производству, свелись к последовательному выполнению самых простых операций, то с совершенствованием техники живой труд начал вытесняться машинным. Уже в 1970-е гг. стали повсеместно внедряться станки с ЧПУ (числовым программным управлением). В 1980-е гг. наступило десятилетие станков, управляемых компьютерами. С созданием локальных (охватывающих предприятие, производственный комплекс) компьютерных сетей возникли системы автоматического проектирования, технологической подготовки и управления производством (SAD/SAM). К началу XXI в. они применялись на 65% заводов машиностроительного комплекса США (в других странах Запада они получили меньшее распространение).
Роботизация в современных условиях пока не стала повсеместной, но в принципе в сочетании с внедрением компьютеров она знаменует коренной перелом в отношении человека к окружающей его действительности. Все предыдущие технические усовершенствования увеличивали лишь физическую силу человека. Массовое, конвейерное производство делало работников придатком машины, выполняющим простейшие функции. Компьютеры же представляют собой инструмент, умножающий не мускульные, а интеллектуальные возможности человека, что создаёт предпосылки ещё большего ускорения темпов технического прогресса. Научно-технический прогресс не только изменил условия быта, отдыха людей, но и сказался на всём облике современного общества, его проблемах, тенденциях развития.
Источник