Меню

Космос от нас все также далеко

Может ли человек долететь до края Вселенной?

В первой части мы поговорили о том, почему в ближайшее время человечество не сможет покинуть границ солнечной системы. А именно, мы рассмотрели одну из возможных проблем освоения космоса – скорость . Все дело в маленьких скоростях современных космических аппаратов. Но что, если однажды человечество сможет развить околосветовую скорость? Будет ли этого достаточно для дальних космических путешествий? На сколько далеко сможет улететь человек от родной Земли? А если и не сам человек, то хотя бы запущенный им непилотируемый космический аппарат. Сможем ли мы покорять другие галактики? А возможно мы сможем однажды добраться до края Вселенной?! Давайте узнаем.

Чисто гипотетически, представим, что мы можем путешествовать в космическом пространстве со скоростью 99,9% от световой. Мы бы стартовали с Земли, и наша скорость примерно была бы равна 1.079.251.769 км\ч. Читателю это может показаться огромной скорость. Бесспорно, так оно и есть, однако в масштабах Вселенной такая скорость окажется мучительно медленной, почти черепашьей. Пока мы бы находились в пределах солнечной системы все было бы прекрасно, но как только мы бы захотели отправить космический аппарат в другую галактику… Но обо всем по порядку.

Как быстро мы бы долетели до Луны?

Всего за 1.28 секунды! Вспомним из предыдущей статьи , что американским астронавтам потребовалось целых 76 часов, чтобы добраться до лунной орбиты.

Начало хорошее, однако, сколько времени у нас уйдет на то, чтобы долететь с около световой скоростью до Плутона? Ответ – 5 часов и 35 минут. Не так уж и страшно. Я бы даже сказал неплохо — порой чтобы добраться до дома отстоять в пробках приходится немногим меньше.

Настало время покинуть солнечную систему!

Направимся мы к ближайшей к нам звезде, после Солнца, — Проксима Центавра. Она расположена примерно в 4,244 светового года от Земли. Это в 270 тыс. раз больше расстояния от Земли до Солнца. На околосветовой скорости мы доберемся до места назначения за 4 года и 3 месяца.

Чтобы жизнь не казалось медом давайте посмотрим, как далеко лететь до центра нашей галактики. И тут впервые цифра кажется ужасающей — до центра Млечного Пути мы долетим за 30.000 лет. А за «каких-то» 2,5 миллиона лет на околосветовой скорости мы долетим до ближайшей к нам Галактики Андромеды. 340 миллионов лет потребуется, чтобы долететь до крупного скопления галактик — Скопление Волос Вероники. И наконец, чтобы добраться до края наблюдаемой нами Вселенной, нам потребовалось бы 46,5 миллиардов лет!

Так как скорость света является пределом скорости, с которой может двигаться материальный объект в пространстве единственной надеждой остаются – гипотетические кротовые норы и гипотетические варп-двигатели, с помощью которых, опять же чисто гипотетически, объекты могут перемещаться в пространстве быстрее скорости света.

Источник

Где начало космоса?

Нам часто кажется, что космос очень далеко – великая и недосягаемая Вселенная большинством из нас созерцается лишь с поверхности Земли, но так ли на самом деле космос далеко?

Давайте начнём разбираться с того, что вообще такое – космос ? Современная наука относит к космосу пространство вне газовых оболочек небесных тел. Земной атмосферой считается область вокруг планеты, в которой воздушная среда вращается вместе с Землей как единое целое.

Чтобы определить с научной точки зрения начало космоса, нужно понять, где заканчивается атмосфера.

Провести строгую границу между атмосферой Земли и космосом не получится. Почему? Во-первых, чем больше будет высота, тем меньше будет плотность атмосферы. Во-вторых, космос не бывает абсолютно пустым. Даже за пределами галактик хоть один атом на один кубический метр, но всё – таки найдётся. Поэтому можно сказать, что атмосфера плавно перетекает в космос, стало быть, граница между нашей планетой и космосом будет условной.

Для газовой оболочки Земли характерна выраженная слоистость из 5 сфер, границы которых тоже весьма размыты.

Первой от земной поверхности расположена тропосфера. Здесь сосредоточено около 80% массы атмосферы. Высота ее колеблется от 8-10 км на полюсе до 16-18 км в тропиках. Это как раз тот слой, где «творится» погода – облака, дожди, грозы, словом, всё, что вам известно.

Читайте также:  Космос нефть газ сертификат

На вершине тропосферы находится тонкий слой, называемый тропопаузой , который является всего лишь «прослойкой» между тропосферой и стратосферой.

Вторая оболочка — стратосфера . Она начинается от 8-16 км и заканчивается до 50-55 км от поверхности Земли. В интервале 20-30 км проходит озоновый слой, защищающий все живое на планете от агрессивного воздействия ультрафиолетовых лучей. За счет их поглощения озоном происходит нагревание воздуха. Здесь летают большинство коммерческих авиалайнеров и путешествуют воздушные шары. Воздух в стратосфере не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы кружащиеся под вами в тропосфере облака и даже бушующие бури.

После стратосферы идёт ещё одна «прослойка» — стратопауза .

От 50-55 км до 80 км простирается мезосфера . Верхняя область мезосферы является самым холодным естественным местом на Земле, где температура может опускаться ниже -143° C.

С 80 км до 500 км расположена термосфера . Газовый состав термосферы подобен приземному, но кислород переходит в атомарное состояние.

На высоте около 500 — 10 000 км над земной поверхностью находится экзосфера — внешний край атмосферы, граничащий с космосом. Здесь метеорологические спутники вращаются вокруг Земли. Это самый верхний, наиболее разреженный атмосферный слой. Он состоит из ионизированного газа (плазмы). Частицы здесь могут свободно удаляться в межпланетное пространство. Масса экзосферы меньше атмосферной в 10 млн раз. Нижняя граница начинается от 500 км над Землей, верхняя достигает нескольких тысяч километров.

По сути, космос начнется в экзосфере, где газовая среда не вращается как единое целое вместе с Землей.

Ниже границы с космосом совершаются аэродинамические полёты, выше этой границы – только космические полёты. Чем выше мы будем подниматься, тем большая скорость будет необходима для поддержания полёта. Так, на высоте около 100 км для орбитального полёта нужна будет первая космическая скорость – 7,9 км/с. Принято считать, что именно на высоте 100 км от Земли и начинается космос (хотя атмосфера ещё не закончилась!). Здесь же пролегает линия Кармана, названная в честь американского инженера Теодора фон Кармана. В XX веке он первым установил, что на этой высоте атмосфера становится настолько разреженной, что для продолжения движения вверх аппарат должен двигаться с первой космической скоростью. Позже астрономы провели более точные расчеты и вычислили, что атмосферные ветра полностью отсутствуют на высоте в 118 км, и там же появляются космические частицы. Так что до космоса всего 1 час езды на машине (если, конечно, ваша машина может ездить вертикально).

На самом деле, после линии Кармана достаточно большое сопротивление воздуха. Относительно стабильной является высота в 400 км – именно на ней и находится МКС. Выше МКС уже не поднимешь: там начинаются опасные радиационные пояса – место, где элементарные космические частицы, захваченные магнитным полем Земли, вынуждены годами скитаться вдоль магнитных линий. Пребывание в радиационных поясах несёт необратимые разрушительные последствия для организма – онкологические заболевания, мутации и прочие неприятности.

Можно ли считать, что мы освоили космическое пространство? Конечно же, нет. Да, хоть человеку и удалось вырваться за пределы ощутимой атмосферы и даже один раз слетать на Луну, всё равно этого пока ещё совсем недостаточно для того, чтобы гордо именовать себя «покорителями космоса». Настоящий космос, я думаю, начинается вовсе не в 100 км над головой, а там, где мы не будем чувствовать влияния магнитных полей Земли, её гравитации, а гравитационное поле нашей планеты перестанет ощущаться лишь на дистанции от неё в 1,5 млн км! Там людей ещё не было (расстояние от Земли до Луны = 380 000 км), но у человечества ещё всё впереди!

Источник

5 самых дальних космических аппаратов, направляющихся за пределы Солнечной системы, где они сегодня?

Ближайшая к Солнцу звезда — Проксима Центавра, примерно в 4,22 световых года от нас. Например, Плутон находится всего в 0,00079 световых годах от нас, то есть примерно в 33 астрономических единицах. В этой статье мы будем двигаться в астрономических единицах (AU) , русское обозначение: а.е. где одна а.е. — это расстояние от Земли до Солнца. Всего пять зондов, отправленных с Земли, достигли орбиты Плутона. В этой статье я познакомлю вас с этими самыми далекими рукотворными устройствами, которые стремительно движутся к границам Солнечной системы. Данные обновлены на февраль 2021 года.

Читайте также:  Зачем нам космос кратко

Новые горизонты — 50 а.е.

Новые горизонты — единственный удаленный космический аппарат, запущенный в этом столетии (2006 г.), облетевший Плутон в 2015 г. и MU69 в начале 2019 г. В настоящее время (февраль 2021 г.) находится примерно в 50 а.е. от Земли. Космический корабль «Новые горизонты» покинул гравитационное поле Земли с самой высокой скоростью в истории, а также стал самым быстро движущимся искусственным телом вокруг Земли.

Пионер 11 — 105,5 а.е.

Четвертым по удаленности искусственным объектом в космосе является космический корабль «Пионер-11» , запущенный в апреле 1973 года. После орбиты Юпитера он стал первым искусственным спутником, достигшим Сатурна в 1979 году. Затем «Пионер-11» направился к звезде в созвездии Орла, находящейся на расстоянии 125 световых лет от нас. В феврале 2021 года зонд находится на расстоянии более 105 а.е. от Земли

Вояджер-2 — 127 а.е.

В 1977 году он отправился в путешествие к внешним планетам солнечной системы. «Вояджер-2» , также известной как «Маринер-12». Космический корабль исследовал 4 планеты и стал единственным человеческим устройством, посетившим Нептун и Уран — с тех пор никто не мог добраться до этих планет. Он не направляется к какой-либо конкретной звезде, но должен пролететь примерно в 4 световых годах от Сириуса.

Пионер 10 — 127 а.е.

Идентичный космическому кораблю Пионер 11, он также был запущен в 1973 году и имел аналогичные цели, но после облета Юпитера и Сатурна он направился в противоположном направлении. Сегодня Пионер 10 является вторым по удаленности рукотворным объектом во Вселенной и направляется к звезде Альдебарран в созвездии Тельца. Он должен достичь её через 2 миллиона лет при последней известной скорости. Последняя связь со спутником состоялся 22—23 января 2003 года.

Вояджер 1 — 152 а.е.

Вояджер-1 начал свое путешествие в сентябре 1977 года, разогнавшись до 61 000 километров в час после гравитационной помощи планет Юпитера и Сатурна, и стал самым быстро движущимся искусственным объектом на сегодняшний день. Сегодня это также самый далекий объект и постоянно собирает новую информацию о внешних слоях Солнечной системы. Космический корабль «Вояджер-1» также стал первым космическим аппаратом, покинувшим Солнечную систему, и теперь исследует межзвездное пространство.

Концепция будущего

Это пять послов человечества , которые покидают Солнечную систему в соседние миры. Ни один из зондов не достигнет их раньше, чем через сотни тысяч лет, и в настоящее время в разработке нет другого космического зонда, который должен был бы нацелиться на край Солнечной системы. Недавно появилась концепция космической миссии Trident , которая может облететь Нептун в 2038 году и направиться дальше к краю Солнечной системы.

В настоящее время разрабатываются концепции , с помощью которых космические зонды могли бы посещать соседние звезды, при нашей жизни. Одним из них является проект Breakthrough Starshot , в котором будут использоваться лазеры и солнечный парусник для отправки микрозонда к соседней звезде Альфа Центавра. Этот проект все еще находится в зачаточном состоянии, в настоящее время отдельные компоненты предлагаемой концепции все еще проходят проверку.

Технологические разработки постоянно развиваются , и постоянно появляются новые оригинальные концепции о том, как достичь звезд. В ближайшие годы нам определенно есть на что рассчитывать, когда речь идет о путешествиях за пределы Солнечной системы.

Пишите ваши комментарии, если статья была интересна подписывайтесь на канал , жмите палец вверх.

Источник

Эти невероятные расстояния: подборка самых далёких объектов во Вселенной!

Легко ли вам представить расстояние от своего города до соседнего? Возможно, эта задача не будет выглядеть столь сложной. А теперь попробуйте вообразить расстояние до другого континента – получилось? Несомненно, тот, кто совершал авиаперелёты, тоже справится достаточно легко с этой задачей, но как насчёт того, чтобы представить себе путь до другой планеты? Так, чтобы долететь до Марса, «в дороге» придётся провести примерно 7 месяцев, а если задумать экскурсию на Плутон, то придётся потратить 9 лет своей жизни на это путешествие – и это только в один конец, да и на орбите сего холодного и сумрачного мира Солнечная система не заканчивается. Граница Солнечной системы лежит там, где гравитация нашей звезды сильнее гравитации соседних звезд (сфера Хилла). В случае нашего светила ее радиус — примерно два световых года. Грубо говоря, это 19 триллионов километров. Можете себе теперь вообразить это расстояние? И даже самое удачное творение рук человеческих – американский зонд «Вояджер-1», запущенный в 1977 году и считающийся самым быстрым объектом (его скорость равна примерно 60 000 км/ч), до сих пор не добрался до этого рубежа. Возможно ли нашему разуму вообразить границы нашего родного дома в космосе.

Читайте также:  Космос лекции 2021 экзопланеты

Вселенная огромна, а границы гелиосферы – это всего лишь капля в её безграничном молчании. Чтобы понять, насколько далеко от нас находится тот или иной объект, используют космологическое красное смещение. Замеры проводят способами спектроскопии – это самый на данный момент точный и надёжный метод. Сейчас известно о нескольких галактиках, которые по своему возрасту являются почти ровесницами нашей Вселенной, то есть, им почти 13 миллиардов лет! Они могли родиться в то время, когда после Большого взрыва прошло примерно 440 миллионов лет. В этот момент во Вселенной рождались первые звёзды, а вещество собиралось в отдельные, обособленные друг от друга скопления. Вот некоторые из самых древних и далёких объектов:

Z8 GND 5296

Её нашли астрономы из Техасского университета в 2013 году в созвездии Большой Медведицы. Галактика обладает одним из наибольших зарегистрированных значений красного смещения. По предварительным оценкам, свет от этой галактики достигает Земли приблизительно за 13,1 млрд. лет, но, учитывая тот факт, что Вселенная расширяется, в настоящее время эта галактика должна обитать на расстоянии в 30 млрд световых лет от Земли. Исходя из современных представлений о возрасте Вселенной, излучение из этой галактики, наблюдаемое нами сегодня, было испущено, когда Вселенной было всего около 700 млн лет, то есть, именно в этом новорождённом состоянии мы и наблюдаем её в данный момент. Изучая этот древний объект, учёные сравнивают процессы звёздообразования в ней и в нашем Млечном Пути. Так, в Млечном Пути рождается примерно одна новая звезда в год. В Z8 GND 5296 все идёт намного интенсивнее – 300 новых звёзд в год!

EGS – ZS8-1

Первая вышеупомянутая галактика носила почётный титул самой древнейшей галактики недолго – уже в 2015 году учёным удалось обнаружить ещё более раритетный космический объект – галактику EGS – ZS8-1. Свет от этой галактики до Земли шёл ещё дольше — 13,130 млрд лет. Расположена она в созвездии Волопаса. Излучение, доходящее от неё до Земли, было испущено не позднее чем через 5 % времени существования Вселенной. Впервые замечена в телескоп «Хаббл», подтверждение существования было получено с помощью спектрометра MOSFIRE в обсерватории Кека на Гавайях. С учётом расширения Вселенной, расстояние от Земли до этой галактики 30, 1 миллиард световых лет. Однако она – «малышка» по сравнению с нашим Млечным Путём – её масса составляет всего 15 % от массы нашей галактики. Сформировалась она примерно через 670 миллионов лет после Большого взрыва. Звёзды в ней рождаются примерно в 80 раз быстрее, чем у нас. В те далёкие времена водород во Вселенной только-только начинал ионизировать, а этому процессу способствовали рождающиеся молодые звёзды в подобных галактиках.

A2744-YD4

А этот старожил обитает в созвездии Скульптора (Южное полушарие). Эта галактика по истине уникальна. Её наблюдение стало возможным только благодаря эффекту гравитационного линзирования: она находится за гигантским скоплением галактик Abell 2744, которое увеличило изображение более отдалённой галактики A2744-YD4 в 1,8 раза.

Обнаружить её удалось лишь с помощью комплекса радиотелескопов ALMA в 2017 году. Красное смещение составляет 8,38, то есть с Земли мы наблюдаем эту галактику в момент, когда возраст Вселенной составлял всего 600 миллионов лет.

Источник

Adblock
detector