Меню

Космические зоны для изучения солнца примеры

Исследование Солнца

Долгие тысячелетия Солнце было объектом поклонения и главной фигурой в мифах и легендах. Многие культуры считали его сверхъестественным или божественным по природе. Давайте проследим за историей исследования Солнца. Ранние записи о единственной звезде Солнечной системы встречаются в протоиндоевропейской мифологии, где Солнце показано в виде восходящей к небу колеснице. В германской мифологии эта колесница называлась Сол, у ведов – Сурья, а у норвежцев – Сольвенен.

Позолоченная сторона щита в норвежской солнечной колеснице

В Месопотамии Солнце называли Уту – бог справедливости и потомок Луны. У вавилонян и ассирийцев – Шамас. В Египте – Ра, поклонение которому распространилось по всему царству с 25-го века до н.э.

В Новом Свете инки, майя и ацтеки полагали, что Солнце нуждается в человеческих жертвах. У ацтеков это был бог войны, а у греков – Гелиос, который также путешествовал на колеснице по небу.

Божество Сол на монетке римского императора Константина I (примерно 315 г. н.э.)

У римлян это был Сол, лик которого изображали на монетках в 3-м веке н.э. 25 декабря праздновали рождение Солнца. В Китае его считали мудрым дедушкой, правящем в Солнечном Дворце.

Поклонение Солнцу включало и создание храмов и дворцов в его честь. К примеру, в Египте, Мальте, Англии и Ирландии еще остались каменные мегалиты, созданные для определения летнего и зимнего солнцестояний. Стоит отметить, что все это в определенном смысле первобытные методы исследования Солнца, где звезду ассоциировали с богом, а не стандартным небесным телом. Следует переместиться дальше и увидеть, как выглядели научные методы исследования.

Люди наблюдали все внимательнее и начали появляться первые научные концепции. В 1-м тысячелетии до н.э. вавилонские мудрецы отметили, что перемещение звезды по эклиптике лишено однородности. Позже мы поймем, что все дело в движении планеты Земля.

Иллюстрация геоцентрической системы Птолемея, созданная Бартоломеу Велью в 1568 году

В 5-м веке до н. э. Анаксагор говорит, что Солнце – огненный шар, чей свет отражается от Луны. В 3-м веке до н. э. Эрастофен предлагает первую дистанцию Солнца от Земли – 148-153 млн. км. В это же время Аристарх Самосский считает, что Солнце находится в центре Вселенной, а планеты совершают обороты вокруг него. Позже эту точку зрения поддержат исламские и индийские астрономы.

В 1032 году Ибн Сина наблюдает за транзитом Венеры и понимает, что планета находится ближе к Солнцу, чем мы. Солнечные пятна отобразили и задокументировали в Китае в 206 г. до н. э.

Пластина с солнечными пятнами, созданная в 1612 году

Революционной для понимания Солнечной системы и места в ней Земли и других планет стала модель Николая Коперника (гелиоцентрическая модель мира), где Солнце находилось в центре Вселенной. Появление в 17-м веке телескопа помогло отобразить первые детали звезды и планет. В 1672 году Кассини смог вычислить дистанцию к Марсу, что помогло определить точную отдаленность от Солнца. Согласитесь, что в этих работах прослеживается больше научных методов, чем в период обожествления.

В 1666 году Исаак Ньютон первым наблюдал за солнечным светом через призму и доказал, что видит несколько цветов. В 1800 году Уильям Гершель открыл инфракрасное излучение. Спектроскопические исследования начали зарождаться в 19 веке на основе изучения светового звездного спектра.

Солнце, наблюдаемое в EUV между минимумом (слева) и максимумом (справа)

Еще одним этапом в изучении стало развитие термодинамики, где главным вкладчиком выступил Уильям Томпсон. Он предложил, что Солнце – постепенно остывающее жидкое тело, излучающее внутренний тепловой запас.

Герман фон Гельмгольц предложил возраст звезды в 20 млн. лет, что не сходилось с земным возрастом (тогда считали 300 млн. лет). В 1920 году Артур Эддингтон сообщил, что давление и температура в ядре способны привести к слиянию, что и вызывает выработку энергии.

Исследование

Давайте рассмотрим новые современные исследования Солнца. Космическая эпоха 20-го века помогла ответить на большую часть вопросов. В 1959-1968 гг. к Солнцу направились первые спутники – Пионеры 5, 6, 7, 8 и 9. Они сумели получить первые данные о солнечном ветре и магнитном поле.

В 1970-х гг. стартуют Гелиос 1 и 2, остановившиеся на орбитальном пути Меркурия и получившие обновленные и более точные сведения о ветре и короне. В 1973 году появляется космическая станция Skylab, использующая для изучения солнечную обсерваторию Аполлон.

В 1980-м году начали изучать гамма, рентгеновские и УФ-лучи. В 1991 года Япония запускает спутник Yohkoh, который до 2001 года наблюдал за вспышками. Наконец в 1995 году появляется космическая обсерватория SOHO. Она установилась в точке Лагранжа и функционировала до появления в 2010-м SDO. В 2006 году для наблюдений отправили STEREO.

Но это не последние миссии. Солнце крайне важно, потому что от его активности зависит комфорт и возможность нашего выживания, а также космическая погода. В 2017 ЕКА планирует отправить Solar Orbiter, который установится на дистанции в 0.28 а. е. к звезде и будет фиксировать ее перемены. В 2018 году может стартовать зонд Plus НАСА, который подойдет на 8.5 солнечных радиусов и будет заниматься измерением частичек и энергии солнечной короны.

Не будем забывать, что кроме энергии и тепла, Солнце щедро поливает нас радиацией, от которой спасает только земное магнитное поле. Но Земле повезло с позицией, поэтому звезда стала источником жизни, который периодически пытается нас убить. Ниже можно ознакомиться со знаменательными датами изучения Солнца.

Космические аппараты, исследовавшие Солнце

  • 150 г. до н.э. – Птолемей создает «Альмагест», в котором описывает модель нашей системы. Она считалась верной до 16 века;
  • 1543 г. – Николай Коперник демонстрирует работу «Революции небесных тел», в которой продвигает гелиоцентрическую (Солнце в центре) модель;
  • 1610 г. – Галилео Галилей и Томас Харриот отдельно наблюдают за солнечными пятнами в телескопы;
  • 1645-1715 гг. – Активность солнечных пятен не сократилась, что могло привести к небольшому ледниковому периоду. Обычно замершие реки оставались жидкими круглый год на более низких высотах;
  • 1814 г. – Обнаружение спектральных линий на Солнце. Стали отпечатками элементов в 1859 году;
  • 1826-1843 гг. – Официальное признание существования цикла солнечных пятен;
  • 8 июля 1842 г. – Первый ИК-обзор солнечной короны, выполненный в период полного затмения в Милане;
  • 1848 г. – Солнечные пятна отображают более прохладную температуру, чем остальная фотосфера;
  • 1 сентября 1859 г. – Первый обзор вспышки и ее геомагнитных эффектов на Земле;
  • 18 июля 1860 г. – Первый зарегистрированный выброс корональной массы, зафиксированный в момент затмения;
  • 1942 г. – Впервые заметили солнечное радиоизлучение;
  • 1946 г. – Первый ракетный обзор нашей звезды;
  • 7 марта 1962 г. – НАСА отправляет орбитальную солнечную обсерваторию (OSO-1);
  • 1973-1974 гг. – Команда Skylab использует телескоп Аполлон для многоспектрального солнечного анализа с земной орбиты;
  • 1994 г. – Первая миссия (Улисс) по изучению космического пространства выше и ниже солнечных полюсов;
  • 26 июня – 5 ноября 1994 г. – Улисс выполняет первые наблюдения за солнечными полярными участками;
  • 8 сентября 2004 г. – Аппарат Генезис доставляет образцы солнечного ветра, собранные на удаленности в 1.5 млн. км;
  • 23 апреля 2007 г. – Аппарат STEREO создал первые 3D-изображения Солнца;
  • Февраль 2010 г. – Обсерватория Солнечной Динамики приступает к изучению формирования солнечной активности и космической погоды через вычисление внутреннего звездного пространства, магнитного поля, раскаленной плазмы короны и уровня яркости;
  • 6 февраля 2011 г. – Зонд STEREO переходит на противоположную солнечную сторону, непрерывно передавая обратно снимки;
Читайте также:  Защищает носа от солнца

Источник

Космические зоны для изучения солнца примеры

Ежегодно на дату 21 июня приходится явление летнего солнцестояния. В Северном полушарии Солнце описывает самую высокую дугу на небе, обеспечивая самый длинный интервал между восходом и заходом Солнца (в южном полушарии происходит всё с точностью наоборот). На широте Братска в эти дни Солнце поднимается на высоту чуть более 57°, на широте Иркутска — на 61°. Самый длинный световой день в году для Братска составляет 17 часов 41 минуту, для Иркутска — 16 часов 46 минут. В течение нескольких дней до и после момента солнцестояния Солнце почти не меняет своего склонения.

В средних широтах наступил сезон серебристых облаков

В средних широтах северного полушария Земли с конца мая начинается сезон серебристых облаков. Бросив ночью взгляд на северный сумеречный горизонт, есть вероятность увидеть светопреставление в исполнении тонкой флуоресцирующей вязи сверхвысотных облаков, образующихся почти на границе земной атмосферы с космосом. По красоте это явление не уступает полярному сиянию! Начинать наблюдения можно через 45-60 минут после захода Солнца, когда оно достаточно опустится ниже горизонта. Если в сумерках вы увидите яркие голубовато-белые волны/перья/нити/гребни/струи/завихрения, раскинувшиеся на северной части неба, то скорее всего это серебристые облака.Регистрируется это редкое явление с 1885 года в целом ряде.

АМС Солнечной системы. Часть 4. Исследователи Солнца.

Автор: Кулькова Светлана 10.11.2011 19:06

Солнце играет важную роль в жизни на Земле, оно дает нам свет, тепло, энергию. Но вместе с тем, солнечные вспышки и выбросы плазмы могут значительно повлиять на геомагнитный фон, вызывая магнитные бури, приводящие к нарушению радиосвязи, возникновению поверхностных зарядов на элементах энергетических систем, и представляющие угрозу для спутниковой навигации, а также угрожая здоровью не только космонавтам на орбите, но самочувствию людей на поверхности Земли. Так что игнорировать капризы нашего светила все же не стоит, а лучше попытаться понять и научиться предсказывать, что оно нам в очередной раз готовит.

Солнце определяет космическую погоду в межпланетном пространстве. Солнечный ветер, в зависимости от скорости (300—1200 км/с), достигает Земли от 35 часов до 5 суток. Он приносит с собой не только заряженные частицы (электроны, протоны и альфа-частицы), но и выбросы корональной массы (СМЕ) с поверхности Солнца, которые в свою очередь, при столкновении с магнитным полем Земли, вызывают полярные сияния и магнитные бури.

Для исследования и отслеживания переменной активности Солнца в разные годы была выведена в космос просто армада обсерваторий. Есть группы научных аппаратов, следящих за изменениями и колебаниями магнитного щита Земли, другая группа проводит мониторинг параметров солнечного ветра и околоземного пространства, влияющего на этот щит, а часть космических обсерваторий непосредственно фиксирует изменения, происходящие на самом Солнце (вспышки, корональные выбросы, источники рентгеновского излучения).

В свое время изучали Солнце в различных участках электромагнитного спектра аппараты Orbital Solar Observatory (OSO 1-8, выведены NASA на орбиту в период с 1962 по 1976 гг.). Серия аппаратов Pioneer 6-9 (NASA, 1965-1969) на околосолнечной орбите производили изучение солнечной плазмы, микрометеоритных потоков, космических лучей, магнитных возмущений, солнечного ветра, физики частиц.

С близкого расстояния, подлетая на 0.29 а.е. к Солнцу, всесторонне обследовали наше светило аппараты Helios A и Helios B (NASA/FRG, 1975-1985, 1976-1979), выведенные на гелиоцентрическую орбиту. С целью исследования солнечных вспышек на орбите Земли успешно проработал аппарат SolarMax (англ. Solar Maximum Mission, NASA, 1980-1989). Ulysses (ESA/NASA, 1990-2008) являлся первым аппаратом, изучавшим Солнце не только из плоскости эклиптики (экваториальной), но и со стороны полюсов (поскольку с Земли невозможно исследовать эти области). Genesis (NASA/JPL, 2001-2004) собирал частицы солнечного ветра и доставил их на Землю.

Читайте также:  Значение солнца по фен шую

КА «Коронас-Фотон» (Роскосмос, 2009) проработал на орбите менее года из-за технических проблем с электропитанием. На борту умершей космической платформы был установлен ансамбль научных инструментов для исследования Солнца, созданных в институтах Российской академии наук и государственных образовательных учреждениях.

Центральным инструментом спутника, отключенным от питания 1 декабря 2009 года вместе со всем научным комплексом, были космические рентгеновские телескопы ТЕСИС. Основной целью эксперимента было осуществление непрерывного мониторинга и анализа активности Солнца и поиск ответов на наиболее актуальные вопросы физики Солнца, такие как проблема нагрева солнечной короны, механизм солнечных вспышек, природа солнечного цикла и другие.

TRACE (англ. Transition Region and Coronal Explorer, NASA, 1998 — 2010) — космический ультрафиолетовый телескоп NASA по исследованию переходных областей и короны Солнца. Перед TRACE стояла задача выяснить, почему солнечная корона такая горячая по сравнению с фотосферой.

Исследования, проведенные TRACE, показали, что значительный нагрев короны происходит в нижних ее слоях, у основания петель, где плазма начинает подниматься и возвращается на поверхность Солнца. На этом снимке TRACE показаны сгущения величественных горячих корональных петель, которые простираются ввысь на 30 и более диаметров Земли:

ДЕЙСТВУЮЩИЕ СТАНЦИИ МОНИТОРИНГА

Но все-таки первой обсерваторией, которая занялась непосредственным изучением нашего светила, стала SOHO, которая находится в точке Лагранжа L1 системы Земля-Солнце, вместе с двумя другими аппаратами ACE и WIND. В этом месте силы притяжения Земли и Солнца одинаковы, что позволяет аппарату находится прямо в направлении Солнца. Они обращаются вокруг этой точки и никогда не загораживается ни Землей, ни Луной.

SOHO (англ. Solar and Heliospheric Observatory) совместный проект ESA и NASA, основной задачей которого является сбор в автоматическом режиме информации о состоянии солнечной атмосферы, глубинных слоях Солнца, солнечном ветре и об активности солнечной короны, для этого на нем установлены 12 уникальных приборов. Приступил к работе в мае 1996 года.

В режиме реального времени SOHO передает изображения Солнца в видимом и ультрафиолетовом диапазоне, а также космической погоде в точке L1. Помимо основной задачи, благодаря анализу снимков, доступных через интернет, астрономами-любителями было открыто более 2000 околосолнечных комет (по состоянию на 2010 год).

Группы исследователей, работающих с различными инструментами, находятся в разных частях света. Однако центр управления SOHO расположен в Центре космических полетов им.Годдарда НАСА в Гринбелте, штат Мэриленд.

ACE (англ. Advanced Composition Explorer) — обсерватория NASA, запущенная в августе 1997 года в точку Лагранжа L1 между Землей и Солнцем (в 1.5 млн. км от Земли), осуществляющая круглосуточное слежение за параметрами солнечного ветра (количестве электронов и протонов) и его магнитного поля в данной точке.

ACE является лучшей на данный момент системой раннего оповещения. Данные о радиационной обстановке поступают специалистам за полчаса до того, как она достигнет Земли. Что позволяет предупредить о надвигающейся геомагнитной буре и принять меры для минимизации ущерба.

Изначально аппарат не предназначался для этого, но получаемая информация позволила переквалифицировать исследовательский спутник в круглосуточную станцию мониторинга окружающего пространства. Количество топлива для поддержания орбиты по подсчетам специалистов хватит до 2024 года.

GGS WIND предназначен для изучения взаимодействия солнечного ветра с магнитосферой Земли и ионосферой. Запущен в 1994 году в рамках Глобальной геокосмической программы (GGS от англ. Global Geospace Science для изучения солнечного ветра, функционирующий до настоящего времени. WIND из-за его неизменного расположения между Землей и Солнцем способен за час предупреждать об изменениях в солнечном ветре.

GOES (англ. Geostationary Operational Environmental Satellite, NESDIS) — серия метеорологических спутников США, запускаемых на геостационарную орбиту с 1975 года, одной из задач которых является патрулирование амплитуды теплового рентгеновского всплеска в диапазоне энергий 0,5-10 кэВ (с длиной волны 0,5—8 ангстрем). Когда на Солнце происходит вспышка, она регистрируется этим спутником, и данные отсылаются в Центр космической погоды NOAA. Одновременно работают два спутника.

WIND, GOES, ACE, SOHO вместе аппаратами, изучающими магнитосферу Земли, такими как, например, группа из четырех идентичных аппаратов Cluster (ESA/NASA, 2000) и японский спутник GEOTAIL (ISAS/NASA, 1992), помогают подробно изучить влияние солнечной переменности и солнечной активности через межпланетную среду на Землю, в частности на магнитосферу, ионосферу, атмосферу Земли.

RHESSI (англ. Reuven Ramaty High Energy Solar Spectroscopic Imager или Explorer 81) — «Солнечный спектрограф высоких энергий имени Рувена Рамати». Запущен 5 февраля 2002 года, его главная задача заключается в изучении физики ускоренных частиц и взрывных энерговыделения в солнечных вспышках.

Этот спутник делает снимки Солнца в диапазоне жесткого рентгеновского излучения. Регистрирует излучение от мягкого рентгеновского излучения (

3 кэВ) до гамма-излучения (

20 МэВ). Исследования солнечных вспышек, проведенные вместе с ультрафиолетовым телескопом TRACE в 2002 году, указал на возможность более раннего прогноза солнечных вспышек: до начала ультрафиолетового свечения появляются мощные точечные выбросы рентгеновских лучей. Наблюдение же за регулярными микровспышками, происходящими в активной короне, объяснило и то, каким образом она разогревается до температур, в сотни раз превышающих температуру солнечной «поверхности».

Уникальный рентгеновский телескоп-спектрограф RHESSI уникален тем, что с помощью него удалось добиться изображений в рентгеновском диапазоне (что само по себе является трудноразрешимой задачей, так как Х-лучи не преломляются и не отражаются) с разрешением, составляющим две угловые секунды, и тем самым вполне сравнимым с разрешением оптических телескопов на Земле. Компьютеры на Земле анализируют циклические изменения рентгеновского излучения, регистрируемые каждым детектором RHESSI, и восстанавливают изображение.

Читайте также:  Сравнение мамы с солнцем

Исследования RHESSI изменили наш взгляд на солнечные вспышки, в частности, на высокоэнергетические процессы во вспышках. Продолжает работу на орбите до настоящего времени.

STEREO (англ. Solar TErrestrial RElations Observatory) — «Обсерватория солнечно-земных связей«, миссия NASA по изучению и мониторингу коронарных выбросов вещества, которые могут нанести ущерб электросетям на Земле и спутникам в небе. Два идентичных космических аппарата STEREO-A и STEREO-B были запущены 26 октября 2006 года на орбиты близкие к орбите движения Земли вокруг Солнца. В ходе маневров они расположились с разных сторон от нашей планеты и постепенно начали удаляться от нее и друг от друга.

Противоположных точек на солнечной орбите они достигли 6 февраля 2011 года. Теперь одновременно с помощью ультрафиолетовых телескопов можно наблюдать Солнце из двух разнесённых точек, т.е. использовать стереоскопический эффект и получить трехмерные изображения корональных выбросов солнечной плазмы, что позволит намного точнее предсказывать ее свойства, траекторию движения и моменты достижения выбросов окрестностей Земли, то есть предсказывать космическую погоду для нашей планеты. Аппарат SOHO, например, не позволял по одиночному снимку коронографа этого делать.

Также аппараты STEREO случайно регистрируют на своих снимках новые кометы.
Официальный сайт миссии http://stereo.gsfc.nasa.gov/

Hinode (пер. с яп. «Рассвет Солнца«, или Solar-B) — японский научный спутник для исследований в области физики Солнца и является продолжением миссии спутника Solar-A (Yohkoh, 1991 — 2002), запущенном в 1991 году и успешно проработавшем на орбите более 10 лет. Hinode был выведен на солнечно-синхронную орбиту в сентябре 2006 года. Вместе с «Рассветом Солнца» на орбиту попутно также был выведены две полезные нагрузки — радиолюбительский спутник HITSAT и солнечный парус SSSAT.

В изготовлении спутника кроме Японии принимали участие США и Великобритания, а также Норвегия предоставила для приема данных наземную станцию SvalSat.

На своем борту Hinode несет три научных прибора: SOT (Solar Optical Telescope), XRT (X-ray Telescope) и EIS (Extreme-Ultraviolet Imaging Spectrometer) — оптический, рентгеновский телескопы и ультрафиолетовый спектрометр, основное назначение которых состоит в осуществлении высокоточных измерений малых изменений напряжённости солнечного магнитного поля, исследования процессов, ответственных за передачу энергии от фотосферы до короны, а также исследования процессов, порождающих ультрафиолетовое и рентгеновское излучение, таких как вспышки и корональные выбросы массы, и понять как эти явления влияют на космическую погоду.

SDO (англ. Solar Dynamics Observatory) — «Обсерватория солнечной динамики» NASA была запущена 11 февраля 2010 в рамках программы «Жизнь со Звездой» (Living With a Star, LWS). Цель программы LWS является развитие научных знаний, необходимых для эффективного решения аспектов Солнечно-Земных связей, которые непосредственно влияют на жизнь и общество. Цель SDO является понимание влияния Солнца на Землю и околоземное пространство.

В течении 5 лет с геостационарной орбиты «Обсерватория солнечной динамики» будет непрерывно передавать на Землю необработанные данные о быстро меняющемся потоке жесткого ультрафиолета от Солнца с помощью инструмента EVE (англ. Extreme ultraviolet Variability Experiment), будет следить за переплетением магнитных линий и заглянет в недра звезды с помощью прибора HMI (англ. Helioseismic and Magnetic Imager) и будет фотографировать атмосферу и поверхность Солнца в нескольких спектральных диапазонах с помощью приборов AIA (англ. Atmospheric Imaging Assembly).


Эти три прибора позволяют осуществлять постоянный мониторинг Солнца, получая изображения в сверхвысоком разрешении с подробными картами зон активности и тут же передавая на Землю данные для их дальнейшей обработки. Для этого в американском штате Нью-Мексико построена специальная станция космической связи, которая будет работать только с обсерваторией SDO.

SDO практически заменяет морально устаревшую обсерваторию SOHO. Главный эксперимент «Обсерватории Солнечной Динамики» — это изучение переменности Солнца в экстремальном ультрафиолете, осуществляемый с помощью прибора EVE. Именно экстремальный ультрафиолет определяет температуру внешних слоев земной атмосферы и может значительно нагревать их, заставляя расширяться и тормозить движение низколетящих спутников. Кроме того, он же очень сильно влияет на радиосвязь и своей непредсказуемостью постоянно портит жизнь радиоастрономам, пытающимся уловить слабые радиоволны из глубины Вселенной.

PICARD — научно-исследовательский спутник Французского космического агентства (Centre National d’Etudes Spatiales, CNES), запущенный на солнечно-синхронную орбиту 15 июня 2010 года. Он предназначен для мониторинга характеристик солнца, таких как его диаметр и поверхностная плотность потока излучения, с целью оценки влияния колебаний солнечной активности на климат Земли и расширения знаний о физике солнца. Работа спутника рассчитана на 2 года.

Название спутнику было дано в честь Жана Пикара – астронома 17 века, сделавшего серию научных измерений по определению диаметра Cолнца в течении периода, названного минимум Маундера (1645-1715 гг.). Пикар измерил несколько очень важных величин и изучил физические явления: скорость вращения Солнца, степень испускаемого радиационного излучения, присутствие пятен на Солнце, его очертание и диаметр. Все эти данные помогают оценить влияние Солнца на земную поверхность, на температуру окружающей среды и на глобальное потепление.

Сейчас планируется несколько научных миссий по изучению Солнца — это коронограф Aditya-1 (Indian Space Research Organisation, ISRO, 2012), с близкого расстояния (внутри орбиты Меркурия) детально изучат Солнце зонды Solar Probe Plus (NASA/Applied Physics Laboratory, 2015-2018) и Solar Orbiter (ESA, 2017).

Шесть идентичных аппаратов Solar Sentinels (пер. рус. «Солнечные стражи«, NASA, 2012-2017) разделяться на три группы и разместятся на различных расстояниях от Солнца для всестороннего обследования светила и межпланетного пространства (миссия проводиться в рамках программы «Жизнь со звездой«).

Источник

Adblock
detector