Как астрономы измеряют расстояние между космическими телами
Астрономы утверждают, что расстояние от Земли до Луны – 384 тысячи километров, Солнце же удалено от нас на 150 миллионов километров. Но как они смогли это узнать?
Удивительно, но первая попытка определения космических расстояний была сделана еще в Древней Греции ученым Аристархом Самосским, жившим в III веке до нашей эры. Он придумал весьма остроумный способ измерения. Для начала ученый решил определить, во сколько раз Солнце дальше от Земли, чем Луна. К этому времени уже было известно, что Земля, Луна и Солнце имеют шарообразную форму и что Луна светит отраженным от Солнца светом. Аристарх догадался, что если Солнцем освещена ровно половина Луны, угол между направлениями от Луны на Солнце и на Землю является прямым. Если в этот момент измерить с Земли угол между Солнцем и Луной, то можно построить треугольник, в котором будут известны все углы (один – прямой, другой мы измерили, а третий легко высчитать, зная, что сумма углов треугольника всегда равна 180°). А так как от углов треугольника зависит и соотношение его сторон, то, зная расстояние до Луны, можно рассчитать и расстояние до Солнца.
РАССТОЯНИЕ ПО ТЕНИ
Но ведь расстояние до Луны тоже неизвестно! Впрочем, его можно вычислить, зная ее радиус и видимый угловой размер. Угловой размер измерить несложно, а вот определить радиус Луны оказалось куда сложнее. Для этого Аристарху пришлось дождаться лунного затмения. Ученый знал, что затмение Луны происходит, когда она попадает в тень Земли, и край этой тени виден на лунном диске в начальную и в конечную фазы затмения. Значит, наблюдая за тенью, можно определить, во сколько раз Земля больше Луны. Примерно в это время другой древнегреческий ученый, Эратосфен, довольно точно рассчитал размер радиуса нашей планеты, что позволило вычислить размер Луны, а затем и расстояние от Земли до Луны и Солнца.
МАЛЕНЬКАЯ НЕТОЧНОСТЬ – БОЛЬШАЯ ОШИБКА
То, до чего додумались античные ученые, не может не восхищать, но, увы, у них не было точных астрономических приборов. Поэтому все результаты измерений оказались приблизительными. И тем не менее, расстояние до Луны у Аристарха получилось довольно-таки близким к истине – около 500 тысяч километров. То есть он ошибся меньше, чем на треть, – отличный результат, учитывая, как давно это было!
А вот с расстоянием до Солнца Аристарх промахнулся очень сильно. Дело в том, что ученый, как говорится, на глазок определял время, когда Солнце освещает Луну ровно наполовину. В результате у него вышло, что угол между направлением на Луну и на Солнце составляет 87°. Хотя на самом деле, как мы знаем сейчас, этот угол равен примерно 89,8°. Эта, на первый взгляд незначительная, ошибка привела к тому, что вычисленное Аристархом расстояние отличалось от истинного в 20 раз!
После Аристарха другие астрономы пробовали повторить наблюдения по его методу. Но никто не мог точно определить момент измерения угла между Солнцем и Луной, поэтому у всех этот угол получался немного разным, а из-за этого расстояние до Солнца оказывалось то в 20, то в 400 раз больше, чем до Луны. Стало понятно, что этот метод очень неточный и нужно придумать что-то другое.
Некоторые астрономы попробовали использовать метод, который применяется в геодезии, когда нужно определить расстояние до какой-нибудь труднодоступной точки, расположенной, например в болоте или на другой стороне реки. Суть его в следующем. Сперва на земле откладывается отрезок АВ и измеряется его длина. Потом геодезист, встав на точку А, определяет угол между отрезком АВ и направлением на точку С, расстояние до которой нужно измерить. Затем то же самое проделывается в точке В, то есть выясняется величина углов ABC и ВАС. Теперь можно сделать точный чертеж расположения точек А, В и С на листке бумаги. Для этого следует нарисовать в масштабе отрезок АВ, провести из его концов линии под соответствующими углами, и место, где эти линии пересекутся, будет отображать точку С. Имея перед собой такой чертеж, можно, например, узнать расстояние на местности от точки А до точки С – для этого нужно умножить длину отрезка АС на масштаб рисунка. А зная кое-какие геометрические соотношения, можно выяснить и другие параметры треугольника ABC.
УГОЛ НА ФОНЕ НЕБА
Этот же принцип можно применить и для определения расстояния до небесных тел Солнечной системы. Только в этом случае удобнее измерять угол р, определяя различия в видимом положении объекта на небосводе при наблюдении с двух разных точек. Причем, чтобы понять величину угла, астрономы используют далекие звезды в качестве фона, ведь их положение практически не меняется, с какого места Земли на них ни смотри. Так, если из одного пункта какая-то звезда видна у самого края Луны, а из другого эта же звезда в этот же момент видна у противоположного ее края, то по видимому смещению мы можем найти расстояние от Земли до Луны гораздо точнее, чем это сделал Аристарх Самосский. С расстоянием же до Солнца ничего не вышло – из-за того, что расстояние это очень большое (и значит, угол будет очень маленький), главное же, потому что сравнить положение Солнца на небе со звездами, понятное дело, невозможно, ведь днем их не видно.
ОТ МАРСА К СОЛНЦУ
Вопрос о расстоянии от Земли до Солнца не удавалось решить почти два тысячелетия. Но в 1619 году немецкий ученый Иоганн Кеплер открыл закономерность, связывающую время обращения планет вокруг Солнца с расстояниями до него. К примеру, если известно, во сколько раз марсианский год больше земного, можно посчитать, во сколько раз Марс дальше от Солнца, чем Земля. Так как времена обращения планет были давно известны, Кеплер смог вычислить относительные расстояния между объектами Солнечной системы. Он, например, рассчитал, что Марс в 1,52 раза дальше от Солнца, чем Земля, а также, что среднее расстояние между орбитами Земли и Марса примерно в два раза меньше расстояния от Земли до Солнца. И если бы удалось измерить хотя бы одно расстояние, все другие можно было бы легко определить.
В 1672 году французский астроном итальянского происхождения Джованни Доменико Кассини решил попробовать измерить расстояние до Марса тем же способом, которым не получалось измерить расстояние до Солнца, – методом измерения угла из двух разных точек. Астроном хорошо понимал, что точность измерений очень сильно зависит от расстояния между пунктами наблюдений. Поэтому он отправил своего помощника Жана Рише подальше от Европы – во Французскую Гвиану, а сам остался в Париже. В результате этих наблюдений удалось довольно точно измерить расстояние до Марса, а исходя из него – и до Солнца, ошибка составила меньше 3% от истинного значения.
Источник
Удаленность Луны от Солнца
Луна — естественный спутник Земли. Астрономы с древних времен пытались вычислить, какое расстояние от Луны до Солнца и до Земли.
От чего зависит движение Луны
Она движется вместе с Землей, из-за чего наблюдателям видна лишь с одной стороны. Полный оборот вокруг нашей планеты она совершает примерно за месяц. В процессе движения естественный спутник на время загораживает другие звезды и планеты, что свидетельствует о его непосредственной близости к Земле.
Выделяют цикличные фазы небесного тела, которые сменяют друг друга. Всего их 4:
- Новолуние.
- Первая четверть
- Полнолуние.
- Третья четверть.
Во время промежутков между основными фазами видимая часть спутника представляется в форме серпа. Различают также фазы растущей и убывающей Луны. Когда спутник находится над Атлантическим, Тихим или Индийским океаном, то притягивает к себе их воды, вызывая отлив. Когда Луна сдвигается, а влияние на воду ослабевает, происходит прилив.
Удаленность Луны от Земли
Расстояние от Луны до нашей планеты составляет около 384 400 км. Но это значение может увеличиваться или уменьшаться по мере движения спутника вокруг планеты.
Методы, применяемые для измерения расстояния до различных небесных тел, схожи с теми, которые используют землемеры, чтобы определить удаленность предмета, к которому невозможно подойти. Один из них заключается в том, что если в одно и то же время два наблюдателя будут фотографировать расположение космического тела из двух далеких друг от друга мест, а позже сравнят свои снимки, положение спутника Земли относительно звезд на небе будет отличаться. Исходя из полученных данных вычисляют расстояние до объекта.
Несмотря на его сравнительную близость к Земле, добраться до спутника будет тяжело. Долететь по прямой не получится: небесное тело будет постепенно сдвигаться по орбите в сторону, путь придется постоянно корректировать. При полете на второй космической скорости в 11 км/с (40 000 км/ч) полет теоретически займет около 10 часов, но может и больше. Оглядываясь на историю, можно увидеть, что полет команды Нила Армстронга на Луну длился около 80 часов.
Космический корабль должен набирать скорость в атмосфере, чтобы довести ее до предельного значения и вырваться из поля притяжения Земли. Затем кораблю придется тормозить при подлете к месту назначения. Ученые пока не придумали более быстрого способа перемещения в космосе.
Расстояние от Солнца до Луны
В среднем расстояние от Земли до Солнца равно 149,6 млн км. От Солнца до Луны оно примерно такое же. Но чтобы определить точное значение, надо учитывать, когда она ближе к звезде, а когда дальше от нее. Во всех фазах оно будет несколько отличаться.
Расстояние в космосе измеряется сотнями и тысячами световых лет. Современные технологии пока не позволяют человеку путешествовать в открытом космосе. Остается лишь исследовать его с поверхности планеты или использовать для этого управляемые космические аппараты. Методы измерения расстояний между небесными телами постоянно совершенствуются. Сегодня самой передовой является технология лазерной локации.
Источник
Расстояния в космосе
Все когда-либо путешествовали, затрачивая конкретное время на преодоление пути. Какой же бесконечной казалась дорога, когда она измерялась сутками. От столицы России до Дальнего Востока – семь дней езды на поезде! А если на этом транспорте преодолевать расстояния в космосе? Чтобы добраться до Альфа Центавра поездом потребуется всего-то 20 млн. лет. Нет, лучше на самолёте – это в пять раз быстрее. И это до звезды, находящейся рядом. Конечно, рядом — это по звёздным меркам.
Расстояние до Солнца
Расстояния до ближайших объектов
Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.
Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.
Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.
До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.
Средний космос
Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.
Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.
Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.
Дальний космос
Расстояния в космосе до далёких объектов измеряют, используя метод параллакса (смещения). Из него вытекла ещё одна единица измерения – парсек Парсек (пк) — от параллактической секундыЭто та дистанция, с которой радиус земной орбиты наблюдается под углом в 1″. . Величина одного парсека составила 3,26 св. года или 206 265 а. е. Соответственно, есть и тысячи парсек (Кпк), и миллионы (Мпк). А самые дальние объекты во Вселенной будут выражаться в расстояниях миллиард парсек (Гпк). Параллактическим способом можно пользоваться для определения расстояний до объектов, удалённых не далее 100 пк, большие расстояния будут иметь очень значительные погрешности измерений. Для исследования далёких космических тел применяется фотометрический метод . В основе этого метода находятся свойства цефеид – переменных звёзд.
Также для определения расстояний по яркости используют сверхновые звёзды, туманности или очень большие звёзды классов сверхгигантов и гигантов. Посредством этого способа реально вычислять космические расстояния до объектов, расположенных не далее 1000 Мпк. Например, до ближайших к Млечному Пути галактик – Большого и Малого Магеллановых Облаков, получается соответственно 46 и 55 Кпк. А ближайшая галактика Туманность Андромеды окажется на удалении 660 Кпк. Группа галактик в созвездии Большая Медведица отстоит от нас на 2,64 Мпк. А размер видимой вселенной 46 миллиардов световых лет, или 14 Гпк!
Измерения из космоса
Для повышения точности измерений в 1989 году стартовал спутник «Гиппарх». Задачей спутника было определение параллаксов более 100 тысяч звёзд с миллисекундной точностью. В результате наблюдений, были вычислены расстояния для 118 218 звёзд. В их число вошли больше 200 цефеид. Для некоторых объектов изменились ранее известные параметры. Например, рассеянное звёздное скопление Плеяды приблизилось – вместо 135 пк прежнего расстояния получилось всего 118 пк.
Источник